【題目】已知四棱錐P-ABCD的底面ABCD是直角梯形,AB∥CD,AD⊥AB,AD=AB=CD=1,PD⊥平面ABCD,PD=,E是PC的中點.
(1)證明:BE∥平面PAD;
(2)求二面角E-BD-C的大小.
【答案】(1)見解析;(2)
【解析】
(1)根據題意,找到PD的中點,連接EF,AF,根據平行四邊形的證明方法可得線面平行。
(2)建立空間直角坐標系,求得兩個平面的法向量,求兩個平面的法向量即可得到兩個平面的二面角大小。
(1)證明取PD的中點F,連接EF,AF,
∵E為PC中點,
∴EF∥CD,且EF=CD=1.
在梯形ABCD中,AB∥CD,AB=1,
∴EF∥AB,EF=AB,四邊形ABEF為平行四邊形.
∴BE∥AF.∵BE平面PAD,AF平面PAD,
∴BE∥平面PAD.
(2)解分別以DA,DB,DP所在直線為x,y,z軸,建立空間直角坐標系,如圖所示,可得B(1,1,0),C(0,2,0),P(0,0,),E.
∴=(1,1,0),.
設n=(x,y,z)為平面BDE的一個法向量,
則
取x=1,得y=-1,z=,n=(1,-1,).
∵平面ABCD的一個法向量為m=(0,0,1),
∴cos<m,n>=,可得<m,n>=45°.
因此,二面角E-BD-C的大小為45°.
科目:高中數學 來源: 題型:
【題目】已知數列{an}各項均為正數,其前n項和為Sn,且滿足4Sn=(an+1)2.
(1)求{an}的通項公式;
(2)設,數列{bn}的前n項和為Tn,求Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f (x)=(x+1)lnx﹣a (x﹣1)在x=e處的切線與y軸相交于點(0,2﹣e).
(1)求a的值;
(2)函數f (x)能否在x=1處取得極值?若能取得,求此極值;若不能,請說明理由.
(3)當1<x<2時,試比較 與 大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現了一種相互轉化,相對統(tǒng)一的和諧美,定義:能夠將圓的周長和面積同時等分成兩個部分的函數稱為圓的一個“太極函數”,則下列有關說法中:
①對于圓的所有非常數函數的太極函數中,一定不能為偶函數;
②函數是圓的一個太極函數;
③存在圓,使得是圓的一個太極函數;
④直線所對應的函數一定是圓的太極函數;
⑤若函數是圓的太極函數,則
所有正確的是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數,則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1﹣ax+lnx,(x>0),函數g(x)滿足g(x)=x﹣1,(x∈R).
(1)若函數f(x)在x=1時存在極值,求a的值;
(2)在(1)的條件下,當x>1時,blnx< ,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l、m,平面α、β,下列命題正確的是 ( )
A. l∥β,lαα∥β
B. l∥β,m∥β,lα,mαα∥β
C. l∥m,lα,mβα∥β
D. l∥β,m∥β,lα,mα,l∩m=Mα∥β
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com