【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 1 +2λ2 ,其中λ1與λ2為實(shí)數(shù),則λ12的最大值為(
A.
B.1﹣
C.
D.1+

【答案】B
【解析】解:設(shè)|AB|=c,|AC|=b,
則: = c2 , = b2;
又cosA= ,在 1 +2λ2 的兩邊分別乘以 得: ;
整理得, ,
解得, ;
∴λ12=1﹣( + )≤1﹣2 =1﹣ ;
∴λ12的最大值為 1﹣
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識(shí),掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:,以及對(duì)平面向量的基本定理及其意義的理解,了解如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C的一個(gè)焦點(diǎn)與拋物線C1:y2=-16x的焦點(diǎn)重合,且其離心率為2.

(1)求雙曲線C的方程;

(2)求雙曲線C的漸近線與拋物線C1的準(zhǔn)線所圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,不能證明AP⊥BC的條件是(

A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥P C
D.AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,,E是棱CC1中點(diǎn),FAB的中點(diǎn).

(1)求證:CF//平面AEB1;

(2)求點(diǎn)B到平面AEB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P-ABCD的底面ABCD是直角梯形,AB∥CD,AD⊥AB,AD=AB=CD=1,PD⊥平面ABCD,PD=,E是PC的中點(diǎn).

(1)證明:BE∥平面PAD;

(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某風(fēng)景區(qū)水面游覽中心計(jì)劃國(guó)慶節(jié)當(dāng)日投入之多3艘游船供游客觀光,過(guò)去10年的數(shù)據(jù)資料顯示每年國(guó)慶節(jié)當(dāng)日客流量X(單位:萬(wàn)人)都大于1,并把客流量分成三段整理得下表:

國(guó)慶節(jié)當(dāng)日客流量X

1<X<3

3≤X≤5

X>5

頻數(shù)

2

4

4

以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國(guó)慶節(jié)當(dāng)日客流量相互獨(dú)立.
(1)求未來(lái)連續(xù)3年國(guó)慶節(jié)當(dāng)日中,恰好有1年國(guó)慶節(jié)當(dāng)日客流量超過(guò)5萬(wàn)人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國(guó)慶節(jié)當(dāng)日游船最多使用量:(單位:艘)受當(dāng)日客流量X(單位:萬(wàn)人)的限制,其關(guān)聯(lián)關(guān)系如下表:

國(guó)慶節(jié)當(dāng)日客流量X

1<X<3

3≤X≤5

X>5

游船最多使用量

1

2

3

若某艘游船國(guó)慶節(jié)當(dāng)日使用,則水面游覽中心國(guó)慶節(jié)當(dāng)日可獲得利潤(rùn)3萬(wàn)元,若某艘游船國(guó)慶節(jié)當(dāng)日不使用,則水面游覽中心國(guó)慶節(jié)當(dāng)日虧損0.5萬(wàn)元,記Y(單位:萬(wàn)元)表示該水面游覽中心國(guó)慶節(jié)當(dāng)日獲得總利潤(rùn),當(dāng)Y的數(shù)學(xué)期望最大時(shí)稱水面游覽中心在國(guó)慶節(jié)當(dāng)日效益最佳,問(wèn)該水面游覽中心的國(guó)慶節(jié)當(dāng)日應(yīng)投入多少艘游船才能使該水面游覽中心在國(guó)慶節(jié)當(dāng)日效益最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)θ∈R,則“|θ﹣ |< ”是“sinθ< ”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)生產(chǎn)公司投資A生產(chǎn)線500萬(wàn)元,每萬(wàn)元可創(chuàng)造利潤(rùn)萬(wàn)元,該公司通過(guò)引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線A投資減少了x萬(wàn)元,且每萬(wàn)元的利潤(rùn)提高了;若將少用的x萬(wàn)元全部投入B生產(chǎn)線,每萬(wàn)元?jiǎng)?chuàng)造的利潤(rùn)為萬(wàn)元,其中

若技術(shù)改進(jìn)后A生產(chǎn)線的利潤(rùn)不低于原來(lái)A生產(chǎn)線的利潤(rùn),求x的取值范圍;

若生產(chǎn)線B的利潤(rùn)始終不高于技術(shù)改進(jìn)后生產(chǎn)線A的利潤(rùn),求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξi滿足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2 ,則( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

同步練習(xí)冊(cè)答案