(2013•天河區(qū)三模)已知函數(shù)f(x)=
3
sinxcosx-
1
2
cos2x
,x∈R
(I) 求函數(shù)f(x)的最小正周期及單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC的面積等于3,求邊長a的值.
分析:(I) 函數(shù)f(x)的解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,即可求出函數(shù)的最小正周期,根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間即可得到函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)由f(
A
2
+
π
3
)=
4
5
,A∈(0,π),得到cosA與sinA的值,再利用三角形的面積公式及已知面積與b、sinA的值,求出c的值,再利用余弦定理即可求出a的值.
解答:解:(1)f(x)=
3
2
sin2x-
1
2
cos2x=sin(2x-
π
6
),
∵ω=2,
∴f(x)的最小正周期為π;
∵2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈Z,
即kπ-
π
6
≤x≤kπ+
π
3
,k∈Z,
則函數(shù)的增區(qū)間為[kπ-
π
6
,kπ+
π
3
],k∈Z;
(2)∵f(
A
2
+
π
3
)=
4
5
,A∈(0,π),
∴cosA=
4
5
,sinA=
3
5
,
∵S=
1
2
bcsinA=3,b=2,sinA=
3
5
,
∴c=5,
由余弦定理a2=b2+c2-2bccosA=4+25-2×2×5×
4
5
=13,
∴a=
13
點評:此題考查了兩角和與差的正弦函數(shù)公式,余弦定理,三角形的面積公式,正弦函數(shù)的單調(diào)性,以及三角函數(shù)的周期性及其求法,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)如圖,一個圓形游戲轉(zhuǎn)盤被分成6個均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動時,箭頭A所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個區(qū)域的邊界時重新轉(zhuǎn)動),且箭頭A指向每個區(qū)域的可能性都是相等的.在一次家庭抽獎的活動中,要求每個家庭派一位兒童和一位成人先后分別轉(zhuǎn)動一次游戲轉(zhuǎn)盤,得分情況記為(a,b)(假設(shè)兒童和成人的得分互不影響,且每個家庭只能參加一次活動).
(Ⅰ)求某個家庭得分為(5,3)的概率?
(Ⅱ)若游戲規(guī)定:一個家庭的得分為參與游戲的兩人得分之和,且得分大于等于8的家庭可以獲得一份獎品.請問某個家庭獲獎的概率為多少?
(Ⅲ)若共有5個家庭參加家庭抽獎活動.在(Ⅱ)的條件下,記獲獎的家庭數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)已知函數(shù)f(x)=
1+lg(x-1),x>1
g(x),x<1
的圖象關(guān)于點P對稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
(1)點P的坐標(biāo)為(1,1);
(2)當(dāng)x∈(-∞,0)時,g(x)>0恒成立;
(3)關(guān)于x的方程f(x)=a,a∈R有且只有兩個實根.
其中正確結(jié)論的題號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)函數(shù)y=cosx的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?span id="l9pnlp0" class="MathJye">
1
2
倍(縱坐標(biāo)不變),再向左平移
π
6
個單位,則所得函數(shù)的解析式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)已知數(shù)列{an}為等差數(shù)列,且a2+a7+a12=24,Sn為數(shù)列{an}的前n項和,n∈N*,則S13的值為( 。

查看答案和解析>>

同步練習(xí)冊答案