已知P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上異于長(zhǎng)軸端點(diǎn)A、B的任意點(diǎn),若直線(xiàn)PA、PB的斜率乘積kPA•kPB=-
2
3
,則該橢圓的離心率為(  )
A.
3
3
B.
6
6
C.
1
2
D.
2
2
∵A,B連線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),∴A,B一定關(guān)于原點(diǎn)對(duì)稱(chēng),
設(shè)A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=
y1-y
x1-x
×
-y1-y
-x1-x
=
y2-
y21
x2-
x21

x2
a2
+
y2
b2
=1
,
x12
a2
+
y12
b2
=1

∴兩方程相減可得
y2-
y21
x2-
x21
=-
b2
a2

∵kPA•kPB=-
2
3
,
∴-
b2
a2
=-
2
3

b2
a2
=
2
3

a2-c2
a2
=
2
3
,
c
a
=
3
3

∴e=
3
3

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)過(guò),M(2,
2
),N(
6
,1)兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1的焦點(diǎn)坐標(biāo)為(±1,0),橢圓經(jīng)過(guò)點(diǎn)(1,
2
2

(1)求橢圓方程;
(2)過(guò)橢圓左頂點(diǎn)M(-a,0)與直線(xiàn)x=a上點(diǎn)N的直線(xiàn)交橢圓于點(diǎn)P,求
OP
ON
的值.
(3)過(guò)右焦點(diǎn)且不與對(duì)稱(chēng)軸平行的直線(xiàn)l交橢圓于A(yíng)、B兩點(diǎn),點(diǎn)Q(2,t),若KQA+KQB=2與l的斜率無(wú)關(guān),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)橢圓
x2
16
+
y2
9
=1
內(nèi)的點(diǎn)P(1,2)作兩條互相垂直的弦AB,CD,若弦AB,CD的中點(diǎn)分別為M,N,則直線(xiàn)MN恒過(guò)定點(diǎn),定點(diǎn)的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線(xiàn)段PF1的垂直平分線(xiàn)過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是( 。
A.(0,
1
3
]
B.(
1
2
,
2
3
C.[
1
3
,1)
D.[
1
3
,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的標(biāo)準(zhǔn)方程
x2
8
+
y2
9
=1,則橢圓的焦點(diǎn)坐標(biāo)為_(kāi)_____,離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)p為橢圓等
x2
m
+
y2
24
=1(m≥32)上的一點(diǎn),F(xiàn)1,F(xiàn)2是該橢圓的兩個(gè)焦點(diǎn),若cos∠F1PF2=
5
13
則△PF1F2的面積是( 。
A.48B.16
C.32D.與m有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn)A(-a,0)作直線(xiàn)1交y軸于點(diǎn)P,交橢圓于點(diǎn)Q,若△AOP是等腰三角形,且
PQ
=2
QA
,則橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸,焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線(xiàn)互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為4(
2
-1)
,
(1)求此橢圓方程,并求出準(zhǔn)線(xiàn)方程;
(2)若P在左準(zhǔn)線(xiàn)l上運(yùn)動(dòng),求tan∠F1PF2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案