分析 (1)運用指數(shù)函數(shù)單調(diào)性化簡集合A,由冪函數(shù)單調(diào)性求得B,再由交集定義可得;
(2)求得f(x)的導(dǎo)數(shù),判斷單調(diào)性,即可得到f(2)為最大值.
解答 解:(1)∵1<2x≤16,∴20<2x≤24,即0<x≤4,
∴A={x|0<x≤4},
∵x∈(0,4],∴$y=\sqrt{x}∈({0,2}],B=\left\{{x|0<x≤2}\right\}$.
∴A∩B=(0,2];
(2)f(x)=log2x-$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=$\frac{1}{xln2}$+$\frac{1}{{x}^{2}}$,
f′(x)在(0,2]大于0,可得f(x)在(0,2]遞增,
f(2)取得最大值log22-$\frac{1}{2}$=1-$\frac{1}{2}$=$\frac{1}{2}$.
點評 本題考查集合的交集和函數(shù)的最值的求法,注意運用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | $(\frac{1}{2},1)$ | C. | (1,3] | D. | (1,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | -1 | C. | $\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n | B. | -n | C. | -2n | D. | -3n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3) | B. | (-$\frac{π}{2}$,-1)∪(0,1)∪($\frac{π}{2}$,3) | C. | (-3,-1)∪(0,1)∪(1,3) | D. | (-3,-$\frac{π}{2}$)∪(0,1)∪(1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com