【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員名,其中種子選手名;乙協(xié)會的運動員名,其中種子選手名.從這名運動員中隨機選擇人參加比賽.

(1)設為事件“選出的人中恰有名種子選手,且這名種子選手來自同一個協(xié)會”求事件發(fā)生的概率;

(2)設為選出的人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學期望.

【答案】(1)(2)分布列見解析,

【解析】試題分析:(1)從這名運動員中隨機選擇人參加比賽有種方法,而事件A包含種方法,最后根據(jù)古典概型概率求法得概率(2)先確定隨機變量取法為,再利用組合求出對應概率。列表可得分布列,最后根據(jù)數(shù)學期望公式求期望

試題解析:解:(I)由已知,有,

所以事件發(fā)生的概率為

(II)隨機變量的所有可能取值為

.

所以,隨機變量的分布列為

x

1

2

3

4

P

隨機變量的數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設O為△ABC的外心,已知AB=3,AC=4,非零實數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.

(1)證明:a>0;

(2)若z=a+2b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品的進價為每件元,售價為每件元,每個月可賣出件;如果每件商品在該售價的基礎上每上漲元,則每個月少賣件(每件售價不能高于元).設每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.

(1)求的函數(shù)的函數(shù)關系式并直接寫出自變量的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年1月1日,作為貴陽市打造“千園之城”27個示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設置了水上挑戰(zhàn)項目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再從中抽取2人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.

參考數(shù)據(jù)及公式:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點分別為x1,x2,則x1+x2的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)絡購物已經(jīng)成為一種時尚,電商們?yōu)榱颂嵘,加大了在媒體上的廣告投入.經(jīng)統(tǒng)計,近五年某電商在媒體上的廣告投入費用x(億元)與當年度該電商的銷售收入y(億元)的數(shù)據(jù)如下表:):

年份

2012年

2013年

2014

2015

2016

廣告投入x

0.8

0.9

1

1.1

1.2

銷售收入y

16

23

25

26

30

(1)求y關于x的回歸方程; (2)2017年度該電商準備投入廣告費1.5億元,

利用(1)中的回歸方程,預測該電商2017年的銷售收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

,選用數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作拋物線的兩條切線, 切點分別為, .

(1) 證明: 為定值;

(2) 記△的外接圓的圓心為點, 是拋物線的焦點,任意實數(shù), 試判斷以為直徑的圓是否恒過點? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2sin(x-)-,現(xiàn)將f(x)的圖象向左平移個單位長度,再向上平移個單位長度,得到函數(shù)g(x)的圖象.

(1)求f()+g()的值;

(2)若a,b,c分別是△ABC三個內角A,B,C的對邊,a+c=4,且當x=B時,g(x)取得最大值,求b的取值范圍.

查看答案和解析>>

同步練習冊答案