已知函數(shù)f(x)=x3+ax2+bx+c在x=-
2
3
與x=1時都取得極值.若對x∈[-1,2],不等式f(x)<2c恒成立,則c的取值范圍是( 。
分析:求出f′(x),因為函數(shù)在x=-
2
3
與x=1時都取得極值,所以得到f′(-
2
3
)=0,且f′(1)=0聯(lián)立解得a與b的值,然后把a(bǔ)、b的值代入求得f(x)及f′(x),根據(jù)函數(shù)的單調(diào)性,由于x∈[-1,2]恒成立,只需求出最大值,然后令最大值<2c,即可求出c的范圍.
解答:解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b
f(-
2
3
)=3×
4
9
-
4a
3
+b=0
f(1)=3+2a+b=0
,解得,
a=-
1
2
b=-2

代回原函數(shù)得,f(x)=x3-
1
2
x2-2x+c
,f'(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2]
f′(x) + 0 - 0 +
f(x) 極大值 極小值
所以函數(shù)f(x)的遞增區(qū)間是(-1,-
2
3
)和(1,2],遞減區(qū)間是(-
2
3
,1).
當(dāng)x=-
2
3
時,f(x)=
22
27
+c為極大值,而f(2)=2+c,f(-1)=
1
2
+c
,所以f(2)=2+c為最大值.
要使f(x)<2c,對x∈[-1,2]恒成立,須且只需2+c<2c.
解得c>2.
故選C.
點(diǎn)評:考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及理解函數(shù)恒成立時所取到的條件,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案