“雙曲線的方程為
x2
9
-
y2
16
=1
”是“雙曲線的漸近線方程為4x±3y=0”的(  )
分析:
x2
9
-
y2
16
=0
可得
x2
9
-
y2
16
=1
的漸近線方程為:4x±3y=0,而
x2
9
-
y2
16
=2
的漸近線方程為4x±3y=0,
利用充要條件的有關定義得到“雙曲線的方程為
x2
9
-
y2
16
=1
”是“雙曲線的漸近線方程為4x±3y=0”的充分而不必要條件.
解答:解:因為雙曲線的方程為
x2
9
-
y2
16
=1
,
所以雙曲線的漸近線方程為
x2
9
-
y2
16
=0
,即4x±3y=0,
所以雙曲線的漸近線方程為:4x±3y=0;
若雙曲線的漸近線方程為4x±3y=0成立,
例如為
x2
9
-
y2
16
=2
,其漸近線方程為
x2
9
-
y2
16
=0
,即4x±3y=0,
所以“雙曲線的方程為
x2
9
-
y2
16
=1
”是“雙曲線的漸近線方程為4x±3y=0”的充分而不必要條件.
故選A.
點評:本題考查雙曲線的性質以及利用充要條件的有關的定義解決充要條件問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線的斜率為
2
,且右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
x2-
y2
2
=1
x2-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知拋物線y2=8x的準線過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點,且雙曲線的離心率為2,則該雙曲線的方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程是y=
3
x
,它的一個焦點在拋物線y2=8x的準線上,則雙曲線的方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對稱軸為坐標軸且焦點在x軸上的雙曲線,兩個頂點間的距離為2,焦點到漸近線的距離為2,則雙曲線的方程為
x2-
y2
4
=1
x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知雙曲線的方程為x2-
y2
3
=1,直線m的方程為x=
1
2
,過雙曲線的右焦點F的直線l與雙曲線的右支相交于P、Q,以PQ為直徑的圓與直線m相交于M、N,記劣弧
MN
的長度為n,則
n
|PQ|
的值為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步練習冊答案