一只螞蟻從正方體ABCD-A1B1C1D1的頂點(diǎn)A處出發(fā),經(jīng)正方體的表面,按最短路線爬行到達(dá)頂點(diǎn)C1位置,則下列圖形中可以表示正方體及螞蟻?zhàn)疃膛佬新肪的正視圖是( )
A.①②
B.①③
C.②④
D.③④
【答案】分析:本題可把正方體沿著某條棱展開到一個(gè)平面成為一個(gè)矩形,連接此時(shí)的對(duì)角線AC1即為所求最短路線.
解答:解:由點(diǎn)A經(jīng)正方體的表面,按最短路線爬行到達(dá)頂點(diǎn)C1位置,共有6種展開方式,若把平面ABA1和平面BCC1展到同一個(gè)平面內(nèi),
在矩形中連接AC1會(huì)經(jīng)過BB1的中點(diǎn),故此時(shí)的正視圖為②.
若把平面ABCD和平面CDD1C1展到同一個(gè)平面內(nèi),在矩形中連接AC1會(huì)經(jīng)過CD的中點(diǎn),此時(shí)正視圖會(huì)是④.
其它幾種展開方式對(duì)應(yīng)的正視圖在題中沒有出現(xiàn)或者已在②④中了,
故選C
點(diǎn)評(píng):本題考查空間幾何體的展開圖與三視圖,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

ABCD-A1B1C1D1是單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.白螞蟻爬行的路線是AA1→A1D1,…,黑螞蟻爬行的路線是AB→BB1,…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(i∈N*),設(shè)黑白螞蟻都爬完2007段后各自停止在正方體的某個(gè)頂點(diǎn)處,則此時(shí)黑白螞蟻的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)已知ABCD-A1B1C1D1為單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是AA1→A1D1→…,黑螞蟻爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

ABCD-A1B1C1D1是單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.白螞蟻爬行的路線是AA1→A1D1,…,黑螞蟻爬行的路線是AB→BB1,…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(i∈N*),設(shè)黑白螞蟻都爬完2007段后各自停止在正方體的某個(gè)頂點(diǎn)處,則此時(shí)黑白螞蟻的距離是( 。
A.
2
B.1C.0D.
3
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省廣州六中高二(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

ABCD-A1B1C1D1是單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.白螞蟻爬行的路線是AA1→A1D1,…,黑螞蟻爬行的路線是AB→BB1,…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(i∈N*),設(shè)黑白螞蟻都爬完2007段后各自停止在正方體的某個(gè)頂點(diǎn)處,則此時(shí)黑白螞蟻的距離是( )

A.
B.1
C.0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西大學(xué)附中高二(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知ABCD-A1B1C1D1為單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是AA1→A1D1→…,黑螞蟻爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是   

查看答案和解析>>

同步練習(xí)冊(cè)答案