設(shè)△的三邊為滿足

(Ⅰ)求的值;

(Ⅱ)求的取值范圍.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

試題分析:(Ⅰ)由,即含有角又含有邊,像這一類(lèi)題,可以利用正弦定理把邊化成角,也可利用余弦定理把角化成邊,本題兩種方法都行,若利用正弦定理把邊化成角,利用三角恒等變化,求出角,若利用余弦定理把角化成邊,利用代數(shù)恒等變化,找出邊之間的關(guān)系,從而求出角;(Ⅱ)求的取值范圍,首先利用降冪公式,與和角公式,利用互余,將它化為一個(gè)角的一個(gè)三角函數(shù),從而求出范圍.

試題解析:(Ⅰ),所以,所以,所以所以,即,所以,所以 

(Ⅱ)= =其中  因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121700295089593221/SYS201312170033156994775842_DA.files/image019.png">,  所以  所以

考點(diǎn):正余弦定理的運(yùn)用,三角恒等變化,求三角函數(shù)值域,考查學(xué)生的運(yùn)算能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,其中ω是使f(x)能在x=
π
3
處取得最大值時(shí)的最小正整數(shù).(Ⅰ)求ω的值;
(Ⅱ)設(shè)△ABC的三邊a,b,c滿足b2=ac且邊b所對(duì)的角θ的取值集合為A,當(dāng)x∈A時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)的周期為
π
2
,
(1)求ω的值;
(2)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,求此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx),已知函數(shù)f(x)=
m
n
(ω>0)的周期為
π
2

(1)求ω的值、函數(shù)f(x)的單調(diào)遞增區(qū)間、函數(shù)f(x)的零點(diǎn)、函數(shù)f(x)的對(duì)稱(chēng)軸方程;
(2)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,求此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山西省高三第一學(xué)期8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)△的三邊為滿足

(Ⅰ)求的值;

(Ⅱ)求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案