已知a∥b∥c,l∩a=A,l∩b=B,l∩c=C,求證:a,b,c和l共面.
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:采用說(shuō)理法進(jìn)行證明,首先利用a∥b,所以a和b共面,再利用l與a、b相交于A、B兩點(diǎn),所以l在直線a、b確定的平面內(nèi).從而確定三線a、b、l共面,進(jìn)一步利用同種方法確定a、c、l三直線共面.從而得出結(jié)論.
解答: 證明:因?yàn)閍∥b,所以a和b共面,又l與a、b相交于A、B兩點(diǎn),所以l在直線a、b確定的平面內(nèi),
也就是說(shuō)a、b、l三直線共面;
同理可證a、c、l三直線共面.
因此四條直線a、b、c、l  共面
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):空間中直線的位置關(guān)系,直線與直線平行確定的平面有且只有一個(gè),直線與直線相交確定的平面有且只有一個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<0},B={x|
1
2
2x<4}
,則A∩B等于(  )
A、{x|-1<x<2}
B、{x|-1<x<0}
C、{x|x<1}
D、{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若全集U=R,集合A={x|-3≤x≤1},A∪B={x|-3≤x≤2},則B∩∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的前5項(xiàng)和S5=25,且a4=3,則a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)P(3,2)的一條動(dòng)直線分別交x軸、y軸于點(diǎn)A、B,M是線段AB的中點(diǎn),連結(jié)OM并延長(zhǎng)至點(diǎn)N,使|ON|=2|OM|,求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)對(duì)?x,y有f(x+y)=f(x)+f(y),且x>0時(shí),f(x)<0,f(1)=-2.
(1)求證:f(x)為奇函數(shù)、減函數(shù);
(2)問(wèn)在[-3,3]上,f(x)是否有最值?若有,求最值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n表示兩條不同的直線,α、β表示兩個(gè)不同的平面,則下列命題中不正確的是( 。
A、m⊥α,m⊥β,則α∥β
B、m∥n,m⊥α,則n⊥α
C、m⊥α,n⊥α,則m∥n
D、m∥α,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)若
3
2
m2+m≤bn,對(duì)所有n∈N+都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
2x-x2
=kx-2k+2有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案