13.已知$f(x)=\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}\right.$在定義域R上是增函數(shù),則a的取值范圍是$a≤\frac{1}{2}$.

分析 根據(jù)分段函數(shù)的單調(diào)性建立不等式關(guān)系進(jìn)行求解即可.

解答 解:若函數(shù)f(x)是增函數(shù),
則$\left\{\begin{array}{l}{-\frac{-2a}{2}=a≤2}\\{4-4a≥8-6=2}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤2}\\{a≤\frac{1}{2}}\end{array}\right.$,
解得a≤$\frac{1}{2}$,
故答案為:a≤$\frac{1}{2}$

點(diǎn)評 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)分段函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)是一次函數(shù),且f(f(x))=4x-1,則f(x)=( 。
A.2x-$\frac{1}{3}$B.2x-1C.-2x+1D.2x-$\frac{1}{3}$或-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={-$\frac{1}{3}$,$\frac{1}{2}$),B={x|mx=1}且B⊆A,則m的值為( 。
A.2B.-3C.2或-3D.2或-3或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\vec a,\vec b$是夾角為60°的兩單位向量,向量$\vec c⊥\vec a,\vec c⊥\vec b$,且$|\vec c|=1$,$\vec x=2\vec a-\vec b+\vec c,\vec y=-\vec a+3\vec b-\vec c$,則$cos<\vec x,\vec y>$=$-\frac{{5\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.與直線3x-2y=0的斜率相等,且過點(diǎn)(-4,3)的直線方程為(  )
A.y-3=-$\frac{3}{2}$(x+4)B.y+3=$\frac{3}{2}$(x-4)C.y-3=$\frac{3}{2}$(x+4)D.y+3=-$\frac{3}{2}$(x-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\sqrt{{x^2}-2x-8}$的定義域?yàn)锳,函數(shù)$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定義域?yàn)锽,則使A∩B=∅的實(shí)數(shù)a的取值范圍是(  )
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.過雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦點(diǎn),傾斜角為30°的直線交雙曲線于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求|AB|;
(3)求△AF1B的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$若關(guān)于x的函數(shù)y=f2(x)-bf(x)+1有8個不同的零點(diǎn),則實(shí)數(shù)b的取值范圍是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:f(x)=$\frac{x+1}{x+a}$在區(qū)間[2,+∞)上單調(diào)遞減;命題q:g(x)=loga(-x2-x+2)的單調(diào)遞增區(qū)間為[-$\frac{1}{2}$,1).若命題p∧q為真命題.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案