7.已知某幾何體的三視圖如圖所示,則該幾何體的內(nèi)切球的表面積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.

分析 由三視圖可知該幾何體是一個三棱錐,根據(jù)圖中數(shù)據(jù)求出幾何體的表面積與體積,
從而求出其內(nèi)切球的半徑r,再計算內(nèi)切球的表面積.

解答 解:由三視圖可知,該幾何體是一個三棱錐,
如圖所示,
則幾何體的表面積為
$S=2×\frac{1}{2}×2×2\sqrt{3}+2×\frac{1}{2}×2\sqrt{3}×4=12\sqrt{3}$,
該幾何體的體積為$V=\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×2×2\sqrt{3}=4$;
設(shè)其內(nèi)切球半徑為r,則
$V=\frac{1}{3}Sr=4\sqrt{3}r=4$,
求得$r=\frac{{\sqrt{3}}}{3}$,
所以內(nèi)切球的表面積為
${S_球}=4π{r^2}=4π×{({\frac{{\sqrt{3}}}{3}})^2}=\frac{4π}{3}$.
故選:B.

點(diǎn)評 本題考查了空間幾何體三視圖的應(yīng)用問題,也考查了體積與表面積的計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知方程${x^2}+3\sqrt{3}x+4=0$有兩個實(shí)根x1,x2,記α=arctanx1,β=arctanx2,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2$\sqrt{{S}_{n}}$=an+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;  
(Ⅱ)若bn=(an+1)•2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線 $C:\frac{x^2}{4}+{y^2}=1$,直線l的極坐標(biāo)方程為$2ρcos(θ-\frac{π}{3})=1$.
(1)寫出曲線C的參數(shù)方程及直線l的普通方程;
(2)設(shè)曲線C的左頂點(diǎn)為A,直線l與x軸的交點(diǎn)為B,動點(diǎn)P在曲線C上運(yùn)動,求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在正方形網(wǎng)格紙上,粗實(shí)線畫出的是某多面體的三視圖及其部分尺寸,若該多面體的頂點(diǎn)在同一球面上,則該球的表面積等于( 。
A.B.18πC.24πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是兩個全等的等腰三角形,則此幾何體的表面積是( 。
A.36πB.30πC.24πD.15π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x),且f(0)=2,則不等式f(x)-2ex<0的解集為( 。
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某棱錐的三視圖如圖所示,則該棱錐的外接球的表面積為( 。
A.B.C.πD.

查看答案和解析>>

同步練習(xí)冊答案