【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實(shí)數(shù)m的最大值.

【答案】
(1)解:

f(x)在區(qū)間(﹣∞,﹣b]上遞減,在區(qū)間[﹣b,+∞)上遞增,

所以f(x)min=a+b.

所以a+b=1.


(2)解:因?yàn)閍>0,b>0,且a+b=1,

所以 ,

又因?yàn)? ,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立,

所以 時(shí), 有最小值

所以 ,所以實(shí)數(shù)m的最大值為


【解析】(1)寫(xiě)出分段函數(shù),得出f(x)min=a+b,即可求a+b的值;(2)因?yàn)閍>0,b>0,且a+b=1,利用“1”的代換,求最值,根據(jù) 恒成立,求實(shí)數(shù)m的最大值.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,則當(dāng)φ取最小的值時(shí),g(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿足,.

(1)求數(shù)列,的通項(xiàng)公式;

(2)記,是否存在正整數(shù),使得對(duì)任意正整數(shù)恒成立?若存在,求正整數(shù)的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是函數(shù)的圖象與軸的個(gè)相鄰交點(diǎn)的橫坐標(biāo),且當(dāng)時(shí),取得最大值.

(1)求數(shù)的表達(dá)式;

(2)將函數(shù)的圖象上的每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.

①求函數(shù)的解析式;

②求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;

(2)已知某人一天的走路步數(shù)超過(guò)8000步時(shí)被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計(jì)完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為ab,c,已知2bcosC=acosC+ccosA.

(1)求角C的大。

(2)若b=2,c=,求a及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案