6.中國(guó)古代數(shù)學(xué)家名著《九章算術(shù)》中記載:“芻甍者,下有袤有廣,而上有袤無(wú)廣.芻,草也.甍,屋蓋也.”翻譯為“底面有長(zhǎng)有寬為矩形,頂部只有長(zhǎng)沒有寬為一條棱.芻甍字面意思為茅草屋頂.”現(xiàn)有一個(gè)芻甍如圖所示,四邊形ABCD為正方形,四邊形ABFE、CDEF為兩個(gè)全等的等腰梯形,AB=4,EF$\underset{∥}{=}$$\frac{1}{2}$AB,若這個(gè)芻甍的體積為$\frac{40}{3}$,則異面直線AB與CF所成角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{2\sqrt{2}}{3}$

分析 利用這個(gè)芻甍的體積為$\frac{40}{3}$,求出E到平面ABCD的距離,進(jìn)而求出CF,CD∥AB,∠FCD為異面直線AB與CF所成角,即可求出異面直線AB與CF所成角的余弦值.

解答 解:取CD,AB的中點(diǎn)M,N,連接FM,F(xiàn)N,
則多面體分割為棱柱與棱錐兩個(gè)部分,
設(shè)E到平面ABCD的距離為h,
則$\frac{1}{2}×4×h×2$+$\frac{1}{3}×4×2×h$=$\frac{40}{3}$,
∴h=2,
∵CN=$\sqrt{16+4}$=2$\sqrt{5}$,∴CF=$\sqrt{5+4}$=3,
∵CD∥AB,
∴∠FCD為異面直線AB與CF所成角,
△FCM中,F(xiàn)M=FC=3,CM=2,
∴cos∠FCD=$\frac{9+4-9}{2×3×2}$=$\frac{1}{3}$,
故選A.

點(diǎn)評(píng) 本題考查多面體體積的計(jì)算,考查異面直線所成角的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.利用如圖算法在平面直角坐標(biāo)系上打印一系列點(diǎn),則打印的點(diǎn)在圓x2+y2=25內(nèi)的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四邊形ABCD中,AB∥CD,∠BCD=$\frac{2π}{3}$,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求證:EF⊥平面BCF;
(2)點(diǎn)M在線段EF上運(yùn)動(dòng),當(dāng)點(diǎn)M在什么位置時(shí),平面MAB與平面FCB所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+4cosθ}\\{y=-1+4sinθ}\end{array}\right.$(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l:$ρ=\frac{2\sqrt{2}m}{sin(θ+\frac{π}{4})}$(m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z滿足2+zi=z-2i(i為虛數(shù)單位),則復(fù)數(shù)z的模|z|=(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,∠ABC=90°,BC=6,點(diǎn)P在BC上,則$\overrightarrow{PC}$•$\overrightarrow{PA}$的最小值是( 。
A.-36B.-9C.9D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問(wèn)題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購(gòu)置貨車專門運(yùn)營(yíng)從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營(yíng)一趟,每輛車每
趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)該購(gòu)置幾輛貨
車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{x^2}{2}+b{e^x}$有兩個(gè)極值點(diǎn)x1,x2,其中b為常數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)b的取值范圍;
(2)證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某社區(qū)新建了一個(gè)休閑小公園,幾條小徑將公園分成5塊區(qū)域,如圖,社區(qū)準(zhǔn)備從4種顏色不同的花卉中選擇若干種種植在各塊區(qū)域,要求每個(gè)區(qū)域隨機(jī)用一種顏色的花卉,且相鄰區(qū)域(用公共邊的)所選花卉顏色不能相同,則不同種植方法的種數(shù)共有( 。
A.96B.114C.168D.240

查看答案和解析>>

同步練習(xí)冊(cè)答案