二階矩陣M對(duì)應(yīng)變換將(1,-1)與(-2,1)分別變換成(5,7)與(-3,6).
(1)求矩陣M
(2)若直線l在此變換下所變換成的直線的解析式l′:11x-3y-68=0,求直線l的方程.

(1)(2)x-y-4=0.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

定義運(yùn)算,若函數(shù)上單調(diào)遞減,則實(shí)數(shù)的取值范圍是(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知2×2矩陣M=有特征值λ=-1及對(duì)應(yīng)的一個(gè)特征向量e1=.
(1)求矩陣M.
(2)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(1)數(shù)表如表1所示,若經(jīng)過(guò)兩“操”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫(xiě)出每次“操作”后所得的數(shù)表(寫(xiě)出一種方法即可);表1

1
2
3


1
0
1

(2)數(shù)表如表2所示,若必須經(jīng)過(guò)兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)的所有可能值;表2

(3)對(duì)由個(gè)實(shí)數(shù)組成的列的任意一個(gè)數(shù)表,能否經(jīng)過(guò)有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四邊形ABCD和四邊形AB′C′D分別是矩形和平行四邊形,其中各點(diǎn)的坐標(biāo)分別為A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求將四邊形ABCD變成四邊形AB′C′D的變換矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求曲線y=在矩陣作用下變換所得的圖形對(duì)應(yīng)的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知2×2矩陣M滿足:M=,M=,求M2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求矩陣A=的逆矩陣.

查看答案和解析>>

同步練習(xí)冊(cè)答案