求函數(shù)f(x)=的定義域.

答案:
解析:

解:因?yàn)橐购瘮?shù)f(x)= 有意義,只須滿足條件x22x15≥0|x+3|8≠0,即{xx3x≥5}且|x+3|8≠0,所以函數(shù)的定義域?yàn)椋?/span>xx3x11}xx5.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)若任意直線l過點(diǎn)F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C于兩個(gè)不同的點(diǎn)A,B過點(diǎn)A,BC,兩切線交于點(diǎn)M
(Ⅰ)證明:點(diǎn)M縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實(shí)數(shù)a取值范圍;
(Ⅲ)求證:
2ln2
22
+
2ln3
32
+
2ln4
42
+…+
2ln
n2
n-1
e
,(其中e自然對(duì)數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(福建卷) 題型:044

(1)已知函數(shù)f(x)=x3=x,其圖像記為曲線C.

(i)求函數(shù)f(x)的單調(diào)區(qū)間;

(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1)處的切線交于另一點(diǎn)P2(x2,f(x2)曲線C與其在點(diǎn)P2處的切線交于另一點(diǎn)P3(x3f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值:

(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省豫南九校2012屆高三第四次聯(lián)考數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)lnx2,(aR,e為自然對(duì)數(shù)的底數(shù))

()求函數(shù)f(x)的遞增區(qū)間;

()當(dāng)a1時(shí),過點(diǎn)P(0,t)(tR)作曲線yf(x)的兩條切線,設(shè)兩切點(diǎn)為P1(x1,f(x1)),P2(x2,f(x2))(x1x2),求證x1x2為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省模擬題 題型:解答題

某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每超過1元,租不出去的自行車就增加3輛,為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y (元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得),
(1)求函數(shù)f(x)的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省高考真題 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C,
(ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(ⅱ)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ⅱ)的正確命題,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案