【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
【答案】B
【解析】在組隨機(jī)數(shù)中表示三次投籃恰有兩次命中的有,共組隨機(jī)數(shù),所以所求概率為,故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)集,其中, ,定義向量集.若對(duì)于任意,使得,則稱(chēng)具有性質(zhì).例如具有性質(zhì).
()若,且具有性質(zhì),求的值.
()若具有性質(zhì),求證: ,且當(dāng)時(shí), .
()若具有性質(zhì),且, (為常數(shù)),求有窮數(shù)列, , , 的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng), , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給以證明;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列為遞增的等比數(shù)列, ,
數(shù)列滿(mǎn)足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求證: 是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿(mǎn)足,且數(shù)列的前項(xiàng)和,并求使得對(duì)任意都成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線(xiàn): (為參數(shù))和定點(diǎn), , 是此圓錐曲線(xiàn)的左、右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線(xiàn)的極坐標(biāo)方程;
(2)經(jīng)過(guò)且與直線(xiàn)垂直的直線(xiàn)交此圓錐曲線(xiàn)于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱(chēng)為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h).試驗(yàn)的觀測(cè)結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時(shí)間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時(shí)期偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國(guó)寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話(huà):“斜解立方,得兩壍堵. 斜解壍堵,其一為陽(yáng)馬,一為鱉臑.” 劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽(yáng)馬,其形有似鱉肘,故以名云.” 其實(shí)這里所謂的“鱉臑(biē nào)”,就是在對(duì)長(zhǎng)方體進(jìn)行分割時(shí)所產(chǎn)生的四個(gè)面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),過(guò)右焦點(diǎn)且垂直于軸的直線(xiàn)截橢圓所得弦長(zhǎng)是1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左,右頂點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn)(與不重合),證明:直線(xiàn)和直線(xiàn)交點(diǎn)的橫坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線(xiàn)與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com