已知離心率為的橢圓C:(a>b>0)與過點(diǎn)A(5,0),B(0,)的直線有且只有一個公共點(diǎn)M.
(1)求橢圓C的方程及點(diǎn)M的坐標(biāo);
(2)是否存在過點(diǎn)M的直線l,依次交橢圓C、x軸、y軸于點(diǎn)N(異于點(diǎn)M)、P、Q,且滿足,若存在,求出直線l的方程;若不存在,請說明理由.
【答案】分析:(1)根據(jù)橢圓的離心率為,可得a2=2b2,求出過點(diǎn)A(5,0),B(0,)的直線方程,與橢圓方程聯(lián)立,利用過點(diǎn)A(5,0),B(0,)的直線與橢圓有且只有一個公共點(diǎn)M,即可求得橢圓C的方程及M的坐標(biāo);
(2)假設(shè)存在直線l,滿足題意,根據(jù)直線l依次交橢圓C、x軸、y軸于點(diǎn)N(異于點(diǎn)M)、P、Q,且滿足,可得M,N是線段PQ的三等份點(diǎn),求出N的坐標(biāo)代入橢圓方程,即可得到結(jié)論.
解答:解:(1)∵橢圓的離心率為


∴a2=2b2
∴橢圓C:可化為:x2+2y2=2b2
過點(diǎn)A(5,0),B(0,)的直線方程為
①②聯(lián)立,消去x可得:10
∵過點(diǎn)A(5,0),B(0,)的直線與橢圓有且只有一個公共點(diǎn)M
∴△=800-40(25-2b2)=0
,∴a2=5
∴橢圓C的方程為
時(shí),方程③的根為y=,代入②可得x=1,∴M(1,
(2)假設(shè)存在直線l,滿足題意.
∵直線l依次交橢圓C、x軸、y軸于點(diǎn)N(異于點(diǎn)M)、P、Q,且滿足
∴M,N是線段PQ的三等分點(diǎn)
∵M(jìn)(1,),∴根據(jù)三角形的中位線的性質(zhì),可得N(2,
代入橢圓方程,顯然成立
∴存在直線l,滿足題意,此時(shí)直線的方程為:
即x+-3=0
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查存在性問題,將直線l依次交橢圓C、x軸、y軸于點(diǎn)N(異于點(diǎn)M)、P、Q,且滿足,轉(zhuǎn)化為M,N是線段PQ的三等份點(diǎn)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)已知離心率為的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,且點(diǎn)B在圓M上.

(1)求橢圓C的方程;

(2)若過點(diǎn)A的直線l與圓M交于P,Q兩點(diǎn),且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化三中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知離心率為的橢圓C:過(1,
(1)求橢圓C的方程;
(2)是否存在實(shí)數(shù)m,使得在此橢圓C上存在不同兩點(diǎn)關(guān)于直線y=4x+m對稱,若存在請求出m,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛州市南康中學(xué)高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知離心率為的橢圓C:+=1(a>b>0)過點(diǎn)M(,1,O是坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)已知點(diǎn)A、B為橢圓C上相異兩點(diǎn),且,判定直線AB與圓O:x2+y2=的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省宿州市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知離心率為的橢圓C:的左焦點(diǎn)為F,上頂點(diǎn)為E,直線EF截圓x2+y2=1所得弦長為
(1)求橢圓C的方程;
(2)過D(-2,0)的直線l與橢圓C交于不同的兩點(diǎn)A、B,.試探究的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案