精英家教網 > 高中數學 > 題目詳情

已知函數,在點處的切線方程是(e為自然對數的底)。
(1)求實數的值及的解析式;
(2)若是正數,設,求的最小值;
(3)若關于x的不等式對一切恒成立,求實數的取值范圍。

(1)a=1,b=0,f(x)=xlnx;(2)tln(3)

解析試題分析:(1)根據函數在點(e,f(e))處的切線方程是2x﹣y﹣e=0,可得f(e)=e,f′(e)=2,利用點(e,f(e))在函數f(x)=ax•lnx+b上,即可求實數a,b的值及f(x)的解析式;
(2)h(x)=f(x)+f(t﹣x)=xlnx+(t﹣x)ln(t﹣x),h(x)的定義域為(0,t),確定函數的單調性,從而可求h(x)的最小值;
(3)xlnx+(6﹣x)ln(6﹣x)=f(x)+f(6﹣x)=h(x),t=6時h(x)min=h(3)=6ln3=ln729,從而關于x的不等式xlnx+(6﹣x)ln(6﹣x)≥ln(k2﹣72k)對一切x∈(0,6)恒成立,轉化為ln(k2﹣72k)≤ln729,解不等式,即可求得實數k的取值范圍.
試題解析:(1)依題意有2e﹣f(e)﹣e=0,∴f(e)=e
∵f(x)=ax•lnx+b,∴f′(x)=alnx+a+b∴f′(e)=alne+a+b=2,∴2a+b=2,∴b=2﹣2a
∵點(e,f(e))在函數f(x)=ax•lnx+b上∴f(e)=aelne+b=ae+b=e
∴ae+2﹣2a=e,∴a=1∴b=0,∴f(x)=xlnx;
故實數a=1,b=0,f(x)=xlnx                          …(4分)
(2)h(x)=f(x)+f(t﹣x)=xlnx+(t﹣x)ln(t﹣x),
的定義域為;              
增函數減函數
 (8分)
(3)
由(2)知

對一切恒成立


故實數的取值范圍.(12分)
考點:利用導數求閉區(qū)間上函數的最值;利用導數研究曲線上某點切線方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的導函數為,.求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(1)當時,求的單調區(qū)間、最大值;
(2)設函數,若存在實數使得,求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)= -ax(a∈R,e為自然對數的底數).
(1)討論函數f(x)的單調性;
(2)若a=1,函數g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數,求整數m 的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若,求函數的單調區(qū)間;
(2)設函數在區(qū)間上是增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中a,b∈R
(1)當a=3,b=-1時,求函數f(x)的最小值;
(2)若曲線y=f(x)在點(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對數的底數),求a,b的值;
(3)當a>0,且a為常數時,若函數h(x)=x[f(x)+lnx]對任意的x1>x2≥4,總有成立,試用a表示出b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數:f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點P(1,f(1))的切線方程為y=3x+1
(1)y=f(x)在x=-2時有極值,求f(x)的表達式;
(2)函數y=f(x)在區(qū)間[-2,1]上單調遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

函數 的最大值記為g(t),當t在實數范圍內變化時g(t)最小值為        

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

若函數在點處存在極值,則
a=              ,b=              。

查看答案和解析>>

同步練習冊答案