【題目】端午節(jié)是我國民間為紀念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機問卷調(diào)查了該市1000名消費者在去年端午節(jié)期間的粽子購買量(單位:克),所得數(shù)據(jù)如下表所示:
購買量 | |||||
人數(shù) | 100 | 300 | 400 | 150 | 50 |
將煩率視為概率
(1)試求消費者粽子購買量不低于300克的概率;
(2)若該市有100萬名消費者,請估計該市今年在端午節(jié)期間應準備多少千克棕子才能滿足市場需求(以各區(qū)間中點值作為該區(qū)間的購買量).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為,,以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)過原點作直線的垂線,垂足為,交曲線于另一點,當變化時,求的面積的最大值及相應的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,E為線段PB的中點,F為線段BC上的動點.
(1)求證:AE⊥平面PBC;
(2)試確定點F的位置,使平面AEF與平面PCD所成的銳二面角為30°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,D是的中點.
(1)證明:平面;
(2)若是邊長為2的正三角形,且,,平面平面.求平面與側(cè)面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高新產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,市場研究人員對該公司2019年下半年連續(xù)六個月的利潤進行了統(tǒng)計,統(tǒng)計數(shù)據(jù)列表如下:
月份 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
月利潤(萬元) | 110 | 130 | 160 | 150 | 200 | 210 |
(1)請用相關(guān)系數(shù)說明月利潤y(單位:萬元)與月份代碼x之間的關(guān)系的強弱(結(jié)果保留兩位小數(shù)),求y關(guān)于x的線性回歸方程,并預測該公司2020年1月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,己知生產(chǎn)新型材料的乙企業(yè)對A、B兩種型號各100件新型材料進行模擬測試,統(tǒng)計兩種新型材料使用壽命頻數(shù)如下表所示:
使用壽命 材料類型 | 1個月 | 2個月 | 3個月 | 4個月 | 總計 |
A | 15 | 40 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
現(xiàn)有采購成本分別為10萬元/件和12萬元/件的A、B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,不同類型的新型材料損壞的時間各不相同,經(jīng)甲公司測算,平均每件新型材料每月可以帶來5萬元收入,不考慮除采購成本之外的其他成本,假設(shè)每件新型材料的使用壽命都是整數(shù)月,且以頻率估計每件新型材料使用壽命的概率,如果你是甲公司的負責人,以每件新型材料產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料?
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
參考數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),有下列四個結(jié)論:
①為偶函數(shù);②的值域為;
③在上單調(diào)遞減;④在上恰有8個零點,
其中所有正確結(jié)論的序號為( )
A.①③B.②④C.①②③D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com