1.函數(shù)f(x)是R上的奇函數(shù),且當x∈(-∞,0)時,f(x)=x(2x-3),則f(4)=44.

分析 直接利用函數(shù)的奇偶性以及函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(x)是R上的奇函數(shù),且當x∈(-∞,0)時,f(x)=x(2x-3),
則f(4)=-f(-4)=-[-4(-8-3)]=44.
故答案為:44.

點評 本題考查函數(shù)的奇偶性的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.某市調研考試后,某校對甲、乙兩個高三理科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個高三理科班全部100人中隨機抽取1人為優(yōu)秀的概率為$\frac{4}{10}$.
優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與班級有關系”?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考數(shù)據(jù):(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓E:(x+$\sqrt{2}$)2+y2=12,點F($\sqrt{2}$,0),點P為圓E上的動點,線段PF的垂直平分線交半徑PE于點M.直線l:y=kx+m交橢圓于不同的兩點A,B,原點O到直線l的距離為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求動點M的軌跡方程;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設點P為拋物線y2=16x的焦點,直線l是離心率為$\sqrt{2}$的雙曲線的一條漸近線,則點P到直線l的距離為( 。
A.$\frac{\sqrt{2}}{128}$B.12C.2$\sqrt{2}$D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=lnx-ax(a$>\frac{1}{2}$),當x∈(-2,0)時,f(x)的最小值為2,則a的值等于( 。
A.eB.1C.$\frac{2}{e}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,焦距為2c,若直線y=$\sqrt{3}$(x+c)與橢圓的一個交點滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|(x<1)}\\{-(x-2)^{2}+2(x≥1)}\end{array}\right.$,則關于x的方程f(x+$\frac{1}{x}$-2)=a的實根個數(shù)不可能為( 。
A.5個B.6個C.7個D.8個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-a|-2|x-1|(a∈R).
(1)當a=3時,求函數(shù)f(x)的最大值;
(2)解關于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設sn為等比數(shù)列{an}的前n項和,已知a1=2,a1+s2=a3,a1+s3=a4,則滿足${a_n}={n^2}$的正整數(shù)n為(  )
A.2或4B.2C.4D.8

查看答案和解析>>

同步練習冊答案