精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中, , ,點分別為的中點.

(1)證明: 平面;

2)若,求二面角的余弦值.

【答案】1證明見解析;(2.

【解析】試題分析:1連接, ,點, 分別為, 的中點,可得 的一條中位線, ,由線面平行的判定定理可得結論;2先利用勾股定理證明,由題意以點 為坐標原點, 軸, 軸, 軸建立空間直角坐標系,分別求出平面與平面的一個法向量,根據空間向量夾角余弦公式,可得結果;

試題解析:(1)證明:連接,,點,分別為 的中點,所以為△的一條中位線, ,

平面, 平面,

所以平面.

(2)設,, ,

,得,解得,

由題意以點為坐標原點,軸,軸,

軸建立空間直角坐標系.

可得,,,

,, ,

為平面的一個法向量,則

,得,同理可得平面的一個法向量為

設二面角的平面角為,

,

所以,二面角的余弦值為.

【方法點晴】本題主要考查線面平行的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點.
(1)證明:AC1∥平面BDE;
(2)證明:AC1⊥BD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

極坐標系中, 為極點,半徑為2的圓的圓心坐標為.

1)求圓的極坐標方程;

2)設直角坐標系的原點與極點重合, 軸非負關軸與極軸重合,直線的參數方程為為參數),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了解本市2萬名學生的漢字書寫水平,在全市范圍內進行了漢字聽寫考試,現從某校隨機抽取了50名學生,將所得成績整理后,發(fā)現其成績全部介于之間,將其成績按如下分成六組,得到頻數分布表

成績

人數

4

10

16

10

6

4

1)在答題卡上作出這些數據的頻率分布直方圖;

2)估算該校50名學生成績的平均值和中位數(同一組中的數據用該組區(qū)間的中點值作代表);

3)以該校50名學生成績的頻率作為概率,試估計該市分數在的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知n為正整數,數列{an}滿足an>0, ,設數列{bn}滿足
(1)求證:數列 為等比數列;
(2)若數列{bn}是等差數列,求實數t的值;
(3)若數列{bn}是等差數列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數a1的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:如果函數f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數f(x)是[a,b]上的“雙中值函數”.已知函數f(x)=x3﹣x2+a是[0,a]上的“雙中值函數”,則實數a的取值范圍是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題滿分16分如圖,有一個長方形地塊ABCD,邊AB為2km, AD為4 km.,地塊的一角是濕地圖中陰影部分,其邊緣線AC是以直線AD為對稱軸,以A為頂點的拋物線的一部分.現要鋪設一條過邊緣線AC上一點P的直線型隔離帶EF,E,F分別在邊AB,BC上隔離帶不能穿越濕地,且占地面積忽略不計.設點P到邊AD的距離為t單位:km,BEF的面積為S單位: .

(1)求S關于t的函數解析式,并指出該函數的定義域;

2是否存在點P,使隔離出的BEF面積S超過3 ?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分別是棱BC,CC1上的點(點D 不同于點C),且AD⊥DE,F為B1C1的中點.求證:

(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.

查看答案和解析>>

同步練習冊答案