【題目】已知函數(shù)f(x),則函數(shù)y=f(f(x))﹣1的所有零點構(gòu)成的集合為_____.
【答案】{1,3,9}
【解析】
根據(jù)零點定義解方程,求出零點.
函數(shù)y=f[f(x)]﹣1的零點,即求方程f[f(x)]﹣1=0的解,利用換元法進行求解即可.
解:由y=f(f(x))﹣1=0得f(f(x))=1,
設(shè)t=f(x),則等價為f(t)=1,
當x≤1時,由f(x)=x=1得x=1,
當x>1時,由f(x)=log2(x﹣1)=1得x=3,
即t=1或t=3,
當x≤1時,由f(x)=x=1,得x=1;由f(x)=x=3,得x=3(舍),故此時x=1;
當x>1時,由f(x)=log2(x﹣1)=1得x=3;由f(x)=log2(x﹣1)=3,得x=9,
綜上x=1,或x=3或x=9.
所以函數(shù)y=f[f(x)]﹣1的所有零點所構(gòu)成的集合為:{1,3,9}
故答案為:{1,3,9}.
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計π的值:先請120名同學每人隨機寫下一個都小于1的正實數(shù)對(x,y)且x+y>1;再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(x,y)的個數(shù)m,最后再根據(jù)統(tǒng)計數(shù)m估計π的值,假如統(tǒng)計結(jié)果是m=72,那么可以估計π的值約為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的準線經(jīng)過點,過的焦點作兩條互相垂直的直線,,直線與交于,兩點,直線與交于,兩點,則下列結(jié)論正確的是( )
A.B.的最小值為16
C.四邊形的面積的最小值為64D.若直線的斜率為2,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】任取一個自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1,在這樣的變換下,我們就得到一個新的自然數(shù).如果反復使用這個變換,我們就會得到一串自然數(shù),最終我們都會陷在4→2→1這個循環(huán)中,這就是世界數(shù)學名題“3x+1問題”.如圖所示的程序框圖的算法思路源于此,執(zhí)行該程序框圖,若N=6,則輸出的i=( )
A.6B.7C.8D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在黨中央的英明領(lǐng)導下,在全國人民的堅定支持下,中國的抗擊“新型冠狀肺炎”戰(zhàn)役取得了階段性勝利,現(xiàn)在擺在我們大家面前的是有序且安全的復工復產(chǎn).某商場為了提振顧客的消費信心,對某中型商品實行分期付款方式銷售,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)ξ的分布列為
其中0<a<1,0<b<1.
(1)求購買該商品的3位顧客中,恰有1位選擇分4期付款的概率;
(2)商場銷售一件該商品,若顧客選擇分4期付款,則商場獲得的利潤為2000元;若顧客選擇分5期付款,則商場獲得的利潤為2500元;若顧客選擇分6期付款,則商場獲得的利潤為3000元,假設(shè)該商場銷售兩件該商品所獲得的利潤為X(單位:元),
(i)設(shè)X=5500時的概率為m,求當m取最大值時,利潤X的分布列和數(shù)學期望;
(ii)設(shè)某數(shù)列{xn}滿足x1=0.4,xn=a,2xn+1=b,若a<0.25,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位戰(zhàn)士參加射擊比賽訓練.從若干次預賽成績中隨機抽取8次,記錄如下:
甲82 81 79 78 95 88 93 84
乙92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù),并分別求兩組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)要從中選派一人參加射擊比賽,從統(tǒng)計學的角度考慮,你認為選派哪位戰(zhàn)士參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關(guān)于直線對稱.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線過原點且傾斜角為,設(shè)直線與曲線相交于,兩點,直線與曲線相交于,兩點,當變化時,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com