18.已知函數(shù)f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=($\frac{1}{2}$)x,則f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

分析 由已知可得函數(shù)的周期為4,結(jié)合當(dāng)x∈(0,1)時(shí),f(x)=($\frac{1}{2}$)x,可得答案.

解答 解:∵當(dāng)x∈(0,1)時(shí),f(x)=($\frac{1}{2}$)x
∴f($\frac{1}{2}$)=f(-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$,
又∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
f($\frac{7}{2}$)=f(-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)的應(yīng)用,函數(shù)求值,函數(shù)的周期性,函數(shù)的奇偶性,轉(zhuǎn)化思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.5名學(xué)生進(jìn)行知識(shí)競(jìng)賽,筆試結(jié)束后,甲、乙兩名參賽者去詢問(wèn)成績(jī),回答者對(duì)甲說(shuō):“你們5人的成績(jī)互不相同,很遺憾,你的成績(jī)不是最好的”;對(duì)乙說(shuō):“你不是最后一名”.根據(jù)以上信息,這5個(gè)人的筆試名次的所有可能的種數(shù)是( 。
A.54B.72C.78D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知方程3x+x=5的根在區(qū)間[k,k+1)(k∈Z),則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0).若存在x0,使得f(x0)≥0成立,則a的最小值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,m)(m>0),且cosα=$\frac{2\sqrt{5}}{5}$,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e為自然對(duì)數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2-m+1)+f(-$\frac{3}{4}$)與0的大小關(guān)系;
(3)是否存在實(shí)數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域?yàn)閇kea,keb].若存在,求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若圓(x-1)2+y2=25的弦AB被點(diǎn)P(2,1)平分,則直線AB的方程為(  )
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.($\frac{9}{4}$)${\;}^{\frac{1}{2}}$+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$=3;log412-log43=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)a>0,函數(shù)f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若對(duì)任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案