【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APC,BCPC

D. AP⊥平面PBC

【答案】B

【解析】A中,因為APPB,APPC,PBPCP,所以AP⊥平面PBC,又BC平面PBC,所以APBC,故A正確;

C中,因為平面BCP⊥平面PAC,BCPC,所以BC⊥平面APC,AP平面APC,所以APBC,故C正確;

D中,由AD正確;B中條件不能判斷出APBC

故選B.

點睛: 垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市出租車的現(xiàn)行計價標(biāo)準是:路程在2 km以內(nèi)(含2 km)按起步價8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實中要計等待時間且最終付費取整數(shù),本題在計算時都不予考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 直徑, 所在的平面, 是圓周上不同于 的動點.

(1)證明:平面 平面 ;
(2)若 ,且當(dāng)二面角 的正切值為 時,求直線 與平面 所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x2+x>0},集合B= ,則(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知一艘海監(jiān)船O上配有雷達,其監(jiān)測范圍是半徑為25 km的圓形區(qū)域一艘外籍輪船從位于海監(jiān)船正東40 kmA處出發(fā),徑直駛向位于海監(jiān)船正北30 kmB處島嶼,速度為28 km/h.

這艘外籍輪船能否被海監(jiān)船監(jiān)測到若能,持續(xù)時間多長(要求用坐標(biāo)法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均不相等的等差數(shù)列{an}的前四項和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項和,若Tn≤λan+1n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1mx8yn0l22xmy10互相平行,l1l2之間的距離為 ,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= x3﹣(1+ )x2+2bx在區(qū)間[3,5]上不是單調(diào)函數(shù),則函數(shù)f(x)在R上的極大值為(
A. b2 b3
B. b﹣
C.0
D.2b﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點D,問如何在BC上找到一點M,使得兩條小路AC與DM相互垂直?

查看答案和解析>>

同步練習(xí)冊答案