如圖,在平面直角坐標系中,已知橢圓經(jīng)過點,橢圓的離心率.

(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.

(1);(2)定值.

解析試題分析:(1)待定系數(shù)法求橢圓方程.找到兩個關(guān)于的方程即可.(2)因為的平分線與軸平行,所以直線MA,MB的斜率互為相反數(shù).假設(shè)直線MA聯(lián)立橢圓方程即可得到A點的坐標,因為M點坐標已知.再把k換成-k即可求出B點的坐標.從而求出AB的斜率即可.本題第一小題屬于常規(guī)題型.第二小題要把握以下三方面:首先是MA,MB的斜率是成相反數(shù),假設(shè)了一個另一個也知道.其次A,B的坐標也是只要知道一個另一個只要把k換成-k即可.再次求A,B坐標時M點已經(jīng)知道,用韋達定理很好求出.
試題解析:(1)由,得,故橢圓方程為,
又橢圓過點,則,解之得,
因此橢圓方程為
(2)設(shè)直線的斜率為,,由題,直線MA與MB的斜率互為相反數(shù),直線MB的斜率為,聯(lián)立直線MA與橢圓方程: ,
整理得,由韋達定理,
,整理可得,

所以為定值.
考點:1.待定系數(shù)求橢圓方程.2.直線與圓的位置關(guān)系.3.韋達定理.4.較復(fù)雜的運算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的頂點在橢圓上,在直線上,且
(1)當邊通過坐標原點時,求的長及的面積;
(2)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,為坐標原點,如果一個橢圓經(jīng)過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點和短軸的兩個端點構(gòu)成邊長為2的正方形.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點F(2,0)和定直線,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓拋物線的焦點均在軸上,的中心和 的頂點均為坐標原點從每條曲線上取兩個點,將其坐標記錄于下表中:











(Ⅰ)求分別適合的方程的點的坐標;
(Ⅱ)求的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點,橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以線段為直徑的圓恒過定點

查看答案和解析>>

同步練習冊答案