9.設(shè)集合A={x|x2<2x},B={x|x-1<0},則A∩B=(  )
A.(-∞,-1)B.(-∞,1)C.(0,1)D.(1,2)

分析 分別求解一元二次不等式及一元一次不等式化簡(jiǎn)集合A、B,再由交集運(yùn)算得答案.

解答 解:∵A={x|x2<2x}=(0,2),B={x|x-1<0}=(-∞,1),
∴A∩B=(0,1),
故選:C.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,考查一元一次不等式及一元二次不等式的解法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)x,y滿足x+y=1,則$\frac{4}{x+2}$$+\frac{1}{y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.我國(guó)上是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過(guò)x的部分按平價(jià)收費(fèi),超過(guò)x的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)已知該市有80萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知圓C:(x-1)2+(y-2)2=2與y軸在第二象限所圍區(qū)域的面積為S,直線y=3x+b分圓C的內(nèi)部為兩部分,其中一部分的面積也為S,則b=( 。
A.-1±$\sqrt{10}$B.1$±\sqrt{10}$C.-1-$\sqrt{10}$D.1-$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為8,12,則輸出的a=( 。
A.2B.0C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若$g(x)=f(x),x∈[{-\frac{π}{2},\frac{π}{2}}]$,畫出函數(shù)y=g(x)的圖象,討論y=g(x)-m(m∈R)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.方程lnx+2x=6的根所在的區(qū)間為( 。
A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知隨機(jī)變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
附:若Z~N(μ,σ2),則 P(μ-σ<Z≤μ+σ)=0.6826;P(μ-2σ<Z≤μ+2σ)=0.9544;P(μ-3σ<Z≤μ+3σ)=0.9974.
A.6038B.6587C.7028D.7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若x,y滿足約束條件$\left\{{\begin{array}{l}{y≥x}\\{x+y≥1}\\{2x+3y≥3}\end{array}}\right.$則z=3x+4y的最小值為( 。
A.3B.$\frac{7}{2}$C.4D.$\frac{21}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案