若點(diǎn)(e,a)在函數(shù)y=lnx的圖象上,則tan
3
的值為(  )
分析:利用點(diǎn)(e,a)在函數(shù)y=lnx的圖象上,求出a的值,再利用特殊角的三角函數(shù),可求結(jié)論.
解答:解:∵點(diǎn)(e,a)在函數(shù)y=lnx的圖象上,
∴a=lne=1
∴tan
3
=tan
π
3
=
3

故選B.
點(diǎn)評:本題考查三角函數(shù)值的計(jì)算,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)若f(x0)是函數(shù)f(x)在點(diǎn)x0附近的某個(gè)局部范圍內(nèi)的最大(小)值,則稱f(x0)是函數(shù)f(x)的一個(gè)極值,x0為極值點(diǎn).已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點(diǎn);
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若f(x0)是函數(shù)f(x)在點(diǎn)x0附近的某個(gè)局部范圍內(nèi)的最大(。┲,則稱f(x0)是函數(shù)f(x)的一個(gè)極值,x0為極值點(diǎn).已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若數(shù)學(xué)公式,求函數(shù)y=|f(x)|的極值點(diǎn);
(Ⅱ)若不等式數(shù)學(xué)公式恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省嘉興市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

若f(x)是函數(shù)f(x)在點(diǎn)x附近的某個(gè)局部范圍內(nèi)的最大(小)值,則稱f(x)是函數(shù)f(x)的一個(gè)極值,x為極值點(diǎn).已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若,求函數(shù)y=|f(x)|的極值點(diǎn);
(Ⅱ)若不等式恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:嘉興二模 題型:解答題

若f(x0)是函數(shù)f(x)在點(diǎn)x0附近的某個(gè)局部范圍內(nèi)的最大(。┲,則稱f(x0)是函數(shù)f(x)的一個(gè)極值,x0為極值點(diǎn).已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點(diǎn);
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案