已知向量
a
b
的夾角為120°,|
a
|=2,且(2
a
+
b
)⊥
a
,則|
b
|=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)(2
a
+
b
)⊥
a
得:(2
a
+
b
)•
a
=0,再由向量的數(shù)量積運算化簡后,把數(shù)據(jù)代入即可求出|
b
|.
解答: 解:因為向量
a
b
的夾角為120°,|
a
|=2,且(2
a
+
b
)⊥
a
,
所以(2
a
+
b
)•
a
=2
a
2
+
a
b
=0,即2×4+2×|
b
|×cos120°=0,
解得|
b
|=8,
故答案為:8.
點評:本題考查了向量的數(shù)量積運算,以及向量垂直的條件的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a∈R,則方程x2+4y2sina=1所表示的曲線一定不是( 。
A、直線B、圓C、拋物線D、雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩物體分別從相距70m的兩處同時相向運動.甲第1分鐘走2m,以后每分鐘比前1分鐘多走1m,乙每分鐘走5m. 則甲、乙開始運動后
 
分鐘相遇;如果甲、乙到達(dá)對方起點后立即折返,甲繼續(xù)每分鐘比前1分鐘多走1m,乙繼續(xù)每分鐘走5m,那么開始運動
 
分鐘后第二次相遇.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中:
①“k=1”是“函數(shù)y=cos2kx-sin2kx最小正周期為π”的充要條件;
②“m=
1
2
”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0互垂直”的充分不必要條件;
③函數(shù)y=
x2+4
x2+3
的最小值為2;
其中假命題的為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某生產(chǎn)廠家的年利潤y(單位:萬元)與年產(chǎn)量x(單位:萬件)的函數(shù)關(guān)系式為y=-
1
3
x3+81x-234,則使該生產(chǎn)廠家獲得最大年利潤的年產(chǎn)量為
 
萬件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,若Sn=2n2+3n,則an的表達(dá)式為( 。
A、an=4n+1
B、an=2n-5
C、an=
-3,(n=1)
2n-4,(n≥2)
D、an=
-3,(n=1)
n-6,(n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)小王家訂了一份報紙,送報人可能在早上6點-8點之間把報紙送到他家,他每天離家外出的時間在早上6點-9點之間.他離家前看不到報紙的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
3
x+a
的圖象向左平移一個單位長度得曲線C,若曲線C關(guān)于原點對稱,則a=
 

查看答案和解析>>

同步練習(xí)冊答案