如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動.

(Ⅰ)求三棱錐E-PAD的體積;

(Ⅱ)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;

(Ⅲ)證明:無論點E在邊BC的何處,都有PE⊥AF.

答案:
解析:

  解:(Ⅰ)三棱錐的體積

  . 4分

  (Ⅱ)當點的中點時,與平面平行.

  ∵在中,分別為、的中點,

  ∴,又平面,而平面,

  ∴∥平面. 8分

  (Ⅲ)證明:,

  ,又

  ,又,∴

  又,點的中點,

  ,

  . 12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點.
(1)求二面角P-CD-B的大小;
(2)求證:平面MND⊥平面PCD;
(3)求點P到平面MND的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
,PB=
6

(1)證明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•天津模擬)如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點
F是PB的中點,點E在邊BC上移動,
(Ⅰ)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(Ⅱ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅲ)當BE等于何值時,二面角P-DE-A的大小為45°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點F是PB的中點,點E在邊BC上移動.
(1)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并求出EF到平面PAC的距離;
(2)命題:“不論點E在邊BC上何處,都有PE⊥AF”,是否成立,并說明理由.

查看答案和解析>>

同步練習冊答案