已知tanα=-
1
2
,則sin2α+sinαcosα的值是(  )
分析:化簡sin2α+sinαcosα為
tan2α+tanα
tan2α+1
,再把tanα=-
1
2
代入,運算求得結(jié)果.
解答:解:∵已知tanα=-
1
2

∴sin2α+sinαcosα=
sin2α+sinαcosα
sin2α+cos2α
=
tan2α+tanα
tan2α+1
=
1
4
-
1
2
1
4
+1
=-
1
5
,
故選A.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知tanα=
12
,則sinαcosα-2sin2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知tanθ=- 
1
2
,求
1+2sinθcosθ
sin2θ-cos2θ
的值.
(2)化簡:
sin(2π-α)cos(
11π
2
-α)
sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
12
,求sin2β-3sinβcosβ+4cos2β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
1
2
,則
(sinα+cosα)2
cos2α
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
1
2
,tan(α-β)=-
1
3
,α,β均為銳角,則β等于
 

查看答案和解析>>

同步練習冊答案