6.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的圖象過(guò)點(diǎn)$({0,\frac{1}{2}})$,若$f(x)≤f({\frac{π}{12}})$對(duì)x∈R恒成立,則ω的最小值為( 。
A.2B.10C.4D.16

分析 根據(jù)函數(shù)f(x)的圖象過(guò)點(diǎn)$({0,\frac{1}{2}})$求出φ的值,再由$f(x)≤f({\frac{π}{12}})$對(duì)x∈R恒成立,得出ω•$\frac{π}{12}$+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,由此求出ω的最小值.

解答 解:函數(shù)$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的圖象過(guò)點(diǎn)$({0,\frac{1}{2}})$,
∴f(0)=sinφ=$\frac{1}{2}$,
∴φ=$\frac{π}{6}$,
∴f(x)=sin(ωx+$\frac{π}{6}$);
又$f(x)≤f({\frac{π}{12}})$對(duì)x∈R恒成立,
∴ω•$\frac{π}{12}$+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,
即ω=24k+4,k∈Z,
∴ω的最小值為4.
故選:C.

點(diǎn)評(píng) 本題主要考查了正弦函數(shù)的最大值以及正弦函數(shù)的圖象和性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=log4(4x+1)-ax,(x∈R)是偶函數(shù),
(1)求a的值
(2)若方程f(x)-k=0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)P(1,$-\sqrt{3}$),則它的極坐標(biāo)是( 。
A.$(2,\frac{π}{3})$B.$(2,\frac{4π}{3})$C.$(2,\frac{5π}{3})$D.$(2,\frac{2π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,在正方形ABCD中,AD=4,E為DC上一點(diǎn),且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,F(xiàn)為BC的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)復(fù)數(shù)$z=\frac{-1-2i}{i}$,則復(fù)數(shù)z-1的摸為( 。
A.$\sqrt{10}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知x=1是函數(shù)$f(x)=({x-2}){e^x}-\frac{k}{2}{x^2}+kx({k>0})$的極小值點(diǎn),則實(shí)數(shù)k的取值范圍是(0,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.?dāng)?shù)列{an}中,a1=2,a2=3,an+1=an-an-1(n≥2),那么a2019=( 。
A.1B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.銳角△ABC中,b=1,c=2,則a取值范圍為(  )
A.(1,3)B.$({1,\sqrt{3}})$C.$({\sqrt{3},2})$D.$({\sqrt{3},\sqrt{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)a、b為正實(shí)數(shù),且a+b=2$\sqrt{2}$ab.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案