分析 (1)曲線C的極坐標方程為ρ=-2sinθ(0≤θ<2π),即ρ2=-2ρsinθ,把y=ρsinθ,x=ρcosθ代入即可化為直角坐標方程.點A(4,$\frac{3π}{2}$)化為直角坐標$(4cos\frac{3π}{2},4sin\frac{3π}{2})$,同理點B(4,$\frac{11π}{6}$),化為直角坐標.利用斜截式即可得出.
(2)圓心(0,-1)到直線l的距離d.即可得出M、N兩點的最小距離=d-r.
解答 解:(1)曲線C的極坐標方程為ρ=-2sinθ(0≤θ<2π),
∴ρ2=-2ρsinθ,化為x2+y2+2y=0,配方為x2+(y+1)2=1.
點A(4,$\frac{3π}{2}$)化為:$(4cos\frac{3π}{2},4sin\frac{3π}{2})$,
即A(0,-4),同理點B(4,$\frac{11π}{6}$),化為$(2\sqrt{3},-2)$.
∴直線l的直角坐標方程為:y=$\frac{-2+4}{2\sqrt{3}}$x-4,即$x-\sqrt{3}y$-4=0.
(2)圓心(0,-1)到直線l的距離d=$\frac{|\sqrt{3}-4|}{2}$=2-$\frac{\sqrt{3}}{2}$.
∴M、N兩點的最小距離=d-r=1-$\frac{\sqrt{3}}{2}$.
點評 本題考查了極坐標化為直角坐標方程、點到直線的距離公式、點與圓的位置關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{42π}{3}$ | B. | $\frac{40π}{3}$ | C. | $\frac{43π}{3}$ | D. | $\frac{45π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{15}}}{3}$ | C. | $\frac{{2\sqrt{6}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{2017}$,$\frac{1}{2015}$) | B. | ($\frac{1}{2016}$,$\frac{1}{2014}$) | ||
C. | (-$\frac{1}{2015}$,-$\frac{1}{2017}$)∪($\frac{1}{2017}$,$\frac{1}{2015}$) | D. | (-$\frac{1}{2014}$,$\frac{1}{2016}$)∪($\frac{1}{2016}$,$\frac{1}{2014}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com