18.在三棱錐P-ABC中,PA=$\sqrt{2}$,PB=$\sqrt{3}$,PC=2,且PA,PB,PC兩兩垂直,則此三棱錐外接球的體積是$\frac{9π}{2}$.

分析 三棱錐擴(kuò)展為長(zhǎng)方體,然后求解外接球的半徑,求解體積即可.

解答 解:在三棱錐P-ABC中,PA=$\sqrt{2}$,PB=$\sqrt{3}$,PC=2,且PA,PB,PC兩兩垂直,
三棱錐擴(kuò)展為長(zhǎng)方體,長(zhǎng)方體的對(duì)角線的長(zhǎng)度就是外接球的直徑,
三棱錐P-ABC外接球的半徑為$\frac{1}{2}\sqrt{{{(\sqrt{2})}^2}+{{(\sqrt{3})}^2}+{2^2}}=\frac{3}{2}$,
所以其外接球的體積為$\frac{4}{3}π{(\frac{3}{2})^3}=\frac{9π}{2}$.
故答案為:$\frac{9π}{2}$.

點(diǎn)評(píng) 本題考查幾何體的外接球的體積的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若集合A={x|x2+2x-8<0},集合B={x|-2<x<4},則A∩B等于( 。
A.B.(-2,3)C.(-2,4)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t+1\\ y=t+4\end{array}$(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=$\frac{{\sqrt{3}}}{{\sqrt{1+2{{cos}^2}θ}}}$.
(1)寫(xiě)出直線l一般式方程與曲線C的直角坐標(biāo)的標(biāo)準(zhǔn)方程;
(2)設(shè)曲線C上的點(diǎn)到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=1-2sin2x在點(diǎn)$({\frac{π}{4},f({\frac{π}{4}})})$處的切線為l,則直線l、曲線f(x)以及直線$x=\frac{π}{2}$所圍成的區(qū)域的面積為$\frac{π^2}{16}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和曲線C2的極坐標(biāo)方程;
(2)已知射線l1:θ=α($\frac{π}{6}$<α<$\frac{π}{2}$),將射線l1順時(shí)針?lè)较蛐D(zhuǎn)$\frac{π}{6}$得到l2:θ=α-$\frac{π}{6}$,且射線l1與曲線C1交于兩點(diǎn),射線l2與曲線C2交于O,Q兩點(diǎn),求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.從1,2,3,4,5這五個(gè)數(shù)中一次隨機(jī)取兩個(gè)數(shù),則取出的兩個(gè)數(shù)的和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸入n=5,則輸出的S值為( 。
A.$\frac{1}{20}$B.$\frac{5}{16}$C.$\frac{16}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知兩點(diǎn)A(-m,0)和B(2+m,0)(m>0),若在直線l:x+$\sqrt{3}$y-9=0上存在點(diǎn)P,使得PA⊥PB,則實(shí)數(shù)m的取值范圍是(  )
A.(0,3)B.(0,4)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完$\frac{2}{3}$局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為$\frac{2}{3}$,乙獲勝的概率為$\frac{1}{3}$,各局比賽結(jié)果相互獨(dú)立.
(Ⅰ)求甲在4局以內(nèi)(含 4 局)贏得比賽的概率;
(Ⅱ)記 X 為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案