11.下面幾種推理中是演繹推理的是( 。
A.因?yàn)閥=2x是指數(shù)函數(shù),所以函數(shù)y=2x經(jīng)過定點(diǎn)(0,1)
B.猜想數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項(xiàng)公式為an=$\frac{1}{n(n+1)}$(n∈N*
C.由“平面內(nèi)垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D.由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2

分析 本題考查的知識點(diǎn)是歸納推理、類比推理和演繹推理的定義,根據(jù)定義對4個(gè)命題逐一判斷即可得到答案.

解答 解:對于A,是演繹推理;
對于B,是歸納推理,歸納推理是由部分到整體的推理;
對于C、D,是類比推理,類比推理是由特殊到特殊的推理;
故選:A.

點(diǎn)評 判斷一個(gè)推理過程是否是歸納推理關(guān)鍵是看他是否符合歸納推理的定義,即是否是由特殊到一般的推理過程.判斷一個(gè)推理過程是否是類比推理關(guān)鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個(gè)特殊的推理過程.判斷一個(gè)推理過程是否是演繹推理關(guān)鍵是看他是否符合演繹推理的定義,即是否是由一般到特殊的推理過程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.角α的終邊與單位圓交于點(diǎn)($\frac{4}{5}$,-$\frac{3}{5}$),則cos(α-$\frac{π}{2}$)=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}(b-8){x^2}$+2x(a>0,b≥0)在區(qū)間[1,2]上單調(diào)遞減,則a(b-1)的最大值為(  )
A.4B.$\frac{19}{4}$C.$\frac{9}{2}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>xf′(x)恒成立,則不等式x2f($\frac{1}{x}$)-f(x)>0的解集為(  )
A.(0,1)B.(1,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足:f(x)+2f′(x)>0,那么下列不等式成立的是( 。
A.$f(1)>\frac{f(0)}{{\sqrt{e}}}$B.$f(2)<\frac{f(0)}{e}$C.$f(1)>\sqrt{e}f(2)$D.f(0)>e2f(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ADC=90°,AD∥BC,平面PAD⊥底面ABCD,BC=$\frac{1}{2}$AD,PA=AD=AB=2,Q為AD的中點(diǎn)
(1)求證:平面PQB⊥平面PAD;
(2)若直線PA與平面ABCD所成的角為60°,M是棱PC上的點(diǎn).
①經(jīng)過M,B作平面α,使直線CD∥α并說明理由;
②若PM=tMC,二面角M-BQ-C的平面角的大小為30°,求AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2$\sqrt{2}$,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若CM=$\frac{5}{2}$,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8+πB.8+4πC.16+4πD.16+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在一次測試中,測得(x,y)的四組值分別是A(1,2),B(2,3),C(3,4),D(4,5),則y與x的回歸方程為( 。
A.$\widehat{y}$=x-1B.$\widehat{y}$=2x+1C.$\widehat{y}$=x+2D.$\widehat{y}$=x+1

查看答案和解析>>

同步練習(xí)冊答案