【題目】根據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月生產(chǎn)成本為20萬元,當(dāng)月產(chǎn)量為15噸時(shí),月生產(chǎn)總成本最低至17.5萬元.
(I)寫出月生產(chǎn)總成本(萬元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;
(II)已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少噸時(shí),可獲得最大利潤,并求出最大利潤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實(shí)數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】底面為正方形的四棱錐P﹣ABCD,F(xiàn)為PD中點(diǎn).
(1)求證:PB∥面ACF;
(2)若PD⊥面ABCD,求證:AC⊥面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),若對(duì)任意的,恒成立,則實(shí)數(shù)的取值范圍是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anlog2an , 其前n項(xiàng)和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調(diào),求a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x在(0, )上無零點(diǎn),求a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com