【題目】已知函數(shù)f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調(diào),求a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x在(0, )上無(wú)零點(diǎn),求a的最小值.

【答案】
(1)解:f′(x)=3﹣a﹣ =

當(dāng)a≥3時(shí),有f′(x)<0,即函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減;

當(dāng)a<3時(shí),令f′(x)=0,得x= ,若函數(shù)y=f(x)在區(qū)間(1,3)單調(diào),

≤1或 ≥3,解得:a≤1或 ≤a<3,

綜上,a的范圍是(﹣∞,1]∪[ ,+∞)


(2)解:x→0時(shí),g(x)→+∞,

∴g(x)=(2﹣a)(x﹣1)﹣2lnx<0在區(qū)間(0, )上恒成立不可能,

故要使函數(shù)g(x)在(0, )無(wú)零點(diǎn),只需對(duì)任意的x∈(0, ),g(x)>0恒成立,

即對(duì)x∈(0, ),a>2﹣ 恒成立,

令l(x)=2﹣ ,x∈(0, ),

則l′(x)= ,

令m(x)=2lnx+ ﹣2,x∈(0, ),

則m′(x)= <0,

故m(x)在(0, )上遞減,于是m(x)>m( )=2﹣2ln2>0,

從而,l′(x)>0,于是l(x)在(0, )遞增,

∴l(xiāng)(x)<l( )=2﹣4ln2,

故要使a>2﹣ 恒成立,只需a∈[2﹣4ln2,+∞),

綜上,若函數(shù)g(x)=f(x)﹣x在(0, )上無(wú)零點(diǎn),則a的最小值是2﹣4ln2


【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,判斷導(dǎo)函數(shù)的符號(hào),從而求出函數(shù)的單調(diào)區(qū)間即可;(2)問(wèn)題轉(zhuǎn)化為對(duì)x∈(0, ),a>2﹣ 恒成立,令l(x)=2﹣ ,x∈(0, ),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月生產(chǎn)成本為20萬(wàn)元,當(dāng)月產(chǎn)量為15噸時(shí),月生產(chǎn)總成本最低至17.5萬(wàn)元.

(I)寫(xiě)出月生產(chǎn)總成本(萬(wàn)元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;

(II)已知該產(chǎn)品銷(xiāo)售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少?lài)崟r(shí),可獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)C在橢圓M: =1(a>b>0)上,若點(diǎn)A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點(diǎn).線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點(diǎn)P(﹣3,0),直線l過(guò)點(diǎn)(0,﹣ ),求直線l的方程;
②若直線l過(guò)點(diǎn)(0,﹣1),且與x軸的交點(diǎn)為D.求D點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)與常數(shù),若恒成立,則稱(chēng)為函數(shù)的一個(gè)“P數(shù)對(duì)”,設(shè)函數(shù)的定義域?yàn)?/span>,且。

(1)若的一個(gè)“P數(shù)對(duì)”,且,求常數(shù)的值;

(2)若(1,1)是的一個(gè)“P數(shù)對(duì)”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個(gè)“P數(shù)對(duì)”,且當(dāng)時(shí),,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾影響人們的身體健康,越來(lái)越多的人開(kāi)始關(guān)心如何少產(chǎn)生霧霾,春節(jié)前夕,某市健康協(xié)會(huì)為了了解公眾對(duì)“適當(dāng)甚至不燃放煙花爆竹”的態(tài)度,隨機(jī)采訪了50人,將凋查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

12

7

3

3


(1)以贊同人數(shù)的頻率為概率,若再隨機(jī)采訪3人,求至少有1人持贊同態(tài)度的概率;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊同“適當(dāng)甚至不燃放煙花爆竹”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí),

1求證: ,且當(dāng) 時(shí),有 ;

2判斷 R上的單調(diào)性;

3設(shè)集合A,B,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿(mǎn)足f(-x-1)=f(x-1),其圖象過(guò)點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。

(1)f(x)的解析式;

(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F(xiàn) 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知,

(1)求證:AD⊥平面BCE;

(2)求三棱錐A﹣CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,函數(shù)圖像上相鄰的兩個(gè)對(duì)稱(chēng)中心之間的距離為,且在處取到最小值.

(1)求函數(shù)的解析式;

(2)若將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變),再將向左平移個(gè)單位,得到函數(shù)圖象,求函數(shù)的單調(diào)遞增區(qū)間。

查看答案和解析>>

同步練習(xí)冊(cè)答案