【題目】已知函數(shù)有三個(gè)不同的零點(diǎn), , (其中),則的值為( )
A. B. C. D.
【答案】D
【解析】令f(x)=0,分離變量可得a=,
令g(x)=,
由g′(x)==0,得x=1或x=e.
當(dāng)x∈(0,1)時(shí),g′(x)<0;當(dāng)x∈(1,e)時(shí),g′(x)>0;當(dāng)x∈(e,+∞)時(shí),g′(x)<0.
即g(x)在(0,1),(e,+∞)上為減函數(shù),在(1,e)上為增函數(shù).
∴0<x1<1<x2<e<x3,
a==,令μ=,
則a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,
μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,
對于μ=,μ′=
則當(dāng)0<x<e時(shí),μ′>0;當(dāng)x>e時(shí),μ′<0.而當(dāng)x>e時(shí),μ恒大于0.
畫其簡圖,
不妨設(shè)μ1<μ2,則μ1=,μ2===μ3,
∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)
=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩城相距,在兩城之間距城處建一核電站給兩城供電,為保證城市安全,核電站距城市距離不得小于 .已知供電費(fèi)用等于供電距離的平方與供電量(億度)之積的倍,若城供電量為每月20億度,城供電量為每月10億度.
(1)把月供電總費(fèi)用表示成的函數(shù);
(2)核電站建在距城多遠(yuǎn),才能使供電總費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時(shí)看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 函數(shù)f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的圖象關(guān)于原點(diǎn)對稱,其中m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù);
(3)當(dāng)﹣2≤x≤2 時(shí),不等式f(x)≥(n﹣logma)logma恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知海島A到海岸公路BC的距離AB=50km,B,C間的距離為100km,從A到C必須先坐船到BC上的某一點(diǎn)D,航速為25km/h,再乘汽車到C,車速為50km/h,記∠BDA=θ
(1)試將由A到C所用的時(shí)間t表示為θ的函數(shù)t(θ);
(2)問θ為多少時(shí),由A到C所用的時(shí)間t最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】軸截面是邊長為4 的等邊三角形的圓錐的直觀圖如圖所示,過底面圓周上任一點(diǎn)作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,已知2cosA(bcosC+ccosB)=a.
(1)求角A;
(2)若a= ,b+c=5,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com