5.給出下列說法:
①終邊相同的角同一三角函數(shù)值相等;
②在三角形中,若sinA=sinB,則有A=B;
③不論是用角度制還是用弧度制度量一個(gè)角,它們與扇形的半徑的大小無關(guān);
④若sinα=sinβ,則α與β的終邊相同;
⑤若cos θ<0,則θ是第二或第三象限的角.
其中正確說法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 由任意角的三角函數(shù)的定義,三角函數(shù)值與象限角的關(guān)系,即可得出結(jié)論.

解答 解:①由任意角的三角函數(shù)的定義知,終邊相同的角的三角函數(shù)值相等,正確.
②在三角形中,若sinA=sinB,則有A=B,故正確;
③不論是用角度制還是用弧度制度量一個(gè)角,它們與扇形的半徑的大小無關(guān),正確,
④若sinα=sinβ,則α與β的終邊相同或終邊關(guān)于y軸對(duì)稱,故不正確.
⑤若cosα<0,則α是第二或第三象限角或α的終邊落在x軸的非正半軸上,故不正確.
其中正確的個(gè)數(shù)為3個(gè),
故選:C.

點(diǎn)評(píng) 本題綜合考查了象限角與象限界角、弧度制與角度制、三角函數(shù)值與象限角的關(guān)系等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=λ1($\frac{a}{3}{x}^{3}$+$\frac{b-1}{2}$x2+x)+λ2x•3x,(a,b∈R且a>0).
(1)當(dāng)λ1=1,λ2=0時(shí),若已知x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),且滿足:x1<1<x2<2,求證:f′(-1)>3;
(2)當(dāng)λ1=0,λ2=1時(shí),
①求實(shí)數(shù)y=f(x)-3(1+ln3)x(x>0)的最小值;
②對(duì)于任意正實(shí)數(shù)a,b,c,當(dāng)a+b+c=3時(shí),求證:a•3a+b•3b+c•3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.集合A={x|x2-2x<0},B={x|x2<1},則A∪B等于(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線ax+2y+1=0與直線x-y-2=0互相垂直,那么a的值等于( 。
A.-$\frac{1}{3}$B.2C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中正確的是( 。
A.共線向量的夾角為0°或180°
B.長(zhǎng)度相等的向量叫做相等向量
C.共線向量就是向量所在的直線在同一直線上
D.零向量沒有方向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若圓經(jīng)過點(diǎn)A(2,0),B(4,0),C(1,2),求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D,測(cè)得∠BCD=75°,∠BDC=60°,CD=40m,并在點(diǎn)C測(cè)得塔頂A的仰角為30°.則塔高AB為( 。﹎.
A.20B.20$\sqrt{2}$C.20$\sqrt{3}$D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中的假命題為( 。
A.設(shè)α、β為兩個(gè)不同平面,若直線l在平面α內(nèi),則“α⊥β”是“l(fā)⊥β”的必要不充分條件
B.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p
C.要得到函數(shù)f(x)=cos(2x+$\frac{π}{3}}$)的圖象,只需將函數(shù)g(x)=sin(2x+$\frac{π}{3}}$)的圖象向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度
D.?x∈(0,$\frac{π}{2}$),x<sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N*),則如圖中第10行所有數(shù)的和為2046.

查看答案和解析>>

同步練習(xí)冊(cè)答案