3.若$\frac{z}{1-i}=3+i$,i是虛數(shù)單位,則復(fù)數(shù)z的虛部為-2.

分析 利用復(fù)數(shù)的乘法的運算法則化簡復(fù)數(shù),寫出復(fù)數(shù)的虛部即可.

解答 解:$\frac{z}{1-i}=3+i$,i是虛數(shù)單位,
可得:z=(1-i)(3+i)=4-2i.
復(fù)數(shù)的虛部為:-2.
故答案為:-2.

點評 本題考查復(fù)數(shù)的代數(shù)形式混合運算,復(fù)數(shù)的基本概念的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知直線l1:kx+y=0和直線l2:kx+y+b=0(b>0),射線OC的一個法向量為$\overrightarrow{n_3}$=(-k,1),點O為坐標(biāo)原點,且k≥0,直線l1和l2之間的距離為2,點A、B分別是直線l1、l2上的動點,P(4,2),PM⊥l1于點M,PN⊥OC于點N;
(1)若k=1,求|OM|+|ON|的值;
(2)若|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=8,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值;
(3)若k=0,AB⊥l2,且Q(-4,-4),試求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列選項中,說法正確的是(  )
A.命題“?x0∈R,${x_0}^2-{x_0}≤0$”的否定為“?x∈R,x2-x>0”
B.命題“在△ABC中,A>30°,則$sinA>\frac{1}{2}$”的逆否命題為真命題
C.若非零向量$\overrightarrow a$、$\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$共線
D.設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知{an}為等差數(shù)列,其前n項和為Sn,若S9=12,則下列各式一定為定值的是(  )
A.a3+a8B.a10C.a3+a5+a7D.a2+a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.給出下列四個函數(shù),在(0,+∞)為增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=(x-1)2C.y=2-xD.y=log2(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知各項均為正數(shù)的等比數(shù)列{an}滿足a1•a5=16,a2=2,則公比q=( 。
A.4B.$\frac{5}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)全集U=R,A={x∈R|x<-1或x≥3},B={x∈R|x>2},求:
(1)∁UA;
(2)A∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={1,2,3,5},B={2,4,6},則A∩B=(  )
A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為了得到函數(shù)=4sin(2x+$\frac{π}{5}$),x∈R的圖象,只需把函數(shù)y=4sin(x+$\frac{π}{5}$),x∈R的圖象上所有點的( 。
A.橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B.縱坐標(biāo)伸長到原來的2倍,橫坐標(biāo)不變
C.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變
D.縱坐標(biāo)縮短到原來的$\frac{1}{2}$倍,橫坐標(biāo)不變

查看答案和解析>>

同步練習(xí)冊答案