已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標(biāo)方程為
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C相交于M,N兩點,求M,N兩點間的距離.
(Ⅰ)x2+y2-x-y=0;(Ⅱ)

試題分析:(Ⅰ)利用x=,y=,可把曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.(Ⅱ)把直線l的參數(shù)方程轉(zhuǎn)化為普通方程,求出圓心到直線l的距離,最后利用勾股定理即可求出MN的長度.
試題解析:(Ⅰ)將曲線C的極坐標(biāo)方程化為=,所以2=,
即x2+y2=x+y,所以曲線C的直角坐標(biāo)方程x2+y2-x-y="0."
(Ⅱ)直線l的參數(shù)方程中消去參數(shù)t可得普通方程4x-3t+1=0,而圓的普通方程為x2+y2-x-y=0,所以圓心C(,),半徑r=,圓心C到直線l的距離d= ,
所以直線l被圓C截得的弦長為:=.即M、N兩點間的距離為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面直角坐標(biāo)系,以為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)為,曲線的極坐標(biāo)方程為
(1)寫出點的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點,求中點到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線過點P(-2,-4)的直線為參數(shù))與曲線C相交于點M,N兩點.
(Ⅰ)求曲線C和直線的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.
(Ⅰ)求曲線的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù),使得直線與曲線有兩個不同的公共點,且(其中為坐標(biāo)原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,已知圓的圓心,半徑 
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點,求弦長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,()則直線與圓的交點的極坐標(biāo)為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

坐標(biāo)系與參數(shù)方程選做題極坐標(biāo)方程分別為的兩個圓的圓心距為____________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的圓心坐標(biāo)是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案