已知函數(shù)f(x)對(duì)任意的x,y∈R,都有f(x+y)=f(x)+f(y)-2,,且當(dāng)x>0時(shí),f(x)>2.
(1)判斷f(x)的單調(diào)性,并證明;
(2)若f(3)=5,求滿足f(a2-2a-2)<3的實(shí)數(shù)a的取值范圍.
分析:(1)f(x)在R上單調(diào)遞增,利用單調(diào)性的定義證明.設(shè)x1<x2,x1、x2∈R,則x2-x1>0,所以f(x2-x1)>2,從而有f(x2)+f(-x1)>4,再取x=y=0得:f(0)=2,再取y=-x得:f(-x)=4-f(x),從而可得f(x2)>f(x1);(2)由f(3)=5,可得f(1)=3,于是不等式f(a2-2a-2)<3等價(jià)于f(a2-2a-2)<f(1).利用f(x)在R上遞增,可得a2-2a-2<1,從而可得滿足f(a2-2a-2)<3的實(shí)數(shù)a的取值范圍.
解答:解:(1)f(x)在R上單調(diào)遞增
證明:設(shè)x1<x2,x1、x2∈R,則x2-x1>0,
∵當(dāng)x>0時(shí),f(x)>2
∴f(x2-x1)>2
∵f(x+y)=f(x)+f(y)-2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
對(duì)f(x+y)+2=f(x)+f(y)取x=y=0得:f(0)=2,
再取y=-x得:f(x)+f(-x)=4,即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1
∴f(x)在R上遞增,
(2)解:f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是,不等式f(a2-2a-2)<3等價(jià)于f(a2-2a-2)<f(1)
∵f(x)在R上遞增,
∴a2-2a-2<1
∴a2-2a-3<0
∴-1<a<3.
∴滿足f(a2-2a-2)<3的實(shí)數(shù)a的取值范圍為(-1,3)
點(diǎn)評(píng):本題考查抽象函數(shù)的性質(zhì),考查利用單調(diào)性解不等式,已知抽象函數(shù)的運(yùn)算性質(zhì),常用“賦值法”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
ab
;
(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex
ex+1

(Ⅰ)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,
1
2
)對(duì)稱;
(Ⅱ)設(shè)y=f-1(x)為y=f(x)的反函數(shù),令g(x)=f-1(
x+1
x+2
),是否存在實(shí)數(shù)b
,使得任給a∈[
1
4
1
3
],對(duì)任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)一模)已知函數(shù)f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個(gè)命題中,所有真命題的序號(hào)是
①②③
①②③

①函數(shù)f(x)是偶函數(shù);
②任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)x∈R恒成立;
③存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案