8.某公司的班車分別在7:30,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過15分鐘的概率是( 。
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{5}{8}$

分析 求出小明等車時間不超過15分鐘的時間長度,代入幾何概型概率計算公式,可得答案.

解答 解:設小明到達時間為y,
當y在8:15至8:30時,小明等車時間不超過15分鐘,
故P=$\frac{15}{40}$=$\frac{3}{8}$,
故選:B.

點評 本題考查的知識點是幾何概型,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,AP=AD=2CD=1,AB=2,PA⊥平面ABCD.
(1)求證:平面PBD⊥平面PAC;
(2)若側棱PB上存在點Q,使得VP-ACD:VQ-ABC=1:2,求二面角Q-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在邊長為4的正方形ABCD中,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.
(Ⅰ)點E是AB的中點,點F是BC的中點,求證:平面A′ED⊥平面A′FD;
(Ⅱ)當BE=BF=$\frac{1}{4}$BC,求三棱錐A′-EFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知f(x)=|xex|.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=f2(x)+tf(x)(t∈R),滿足g(x)=-1的x有四個,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展開式的常數(shù)項為15,則$\int_{-a}^a{(\sqrt{1-{x^2}}+sin2x)dx}$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.甲、乙兩企業(yè)根據(jù)賽事組委會要求為獲獎者定做某工藝品作為獎品,其中一等獎獎品3件,二等獎獎品6件;制作一等獎、二等獎所用原料完全相同,但工藝不同,故價格有所差異.甲廠收費便宜,但原料有限,最多只能制作4件獎品,乙廠原料充足,但收費較貴,其具體收費如表所示,則組委會定做該工藝品的費用總和最低為4900元.
獎品
繳費(無/件)
工廠
一等獎獎品二等獎獎品
500400
800600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設函數(shù)f(x)=x3-3x+1,x∈[-2,2]的最大值為M,最小值為m,則M+m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=f(x)導函數(shù)的圖象如圖所示,則下列說法錯誤的是( 。
A.(-1,3)為函數(shù)y=f(x)的遞增區(qū)間B.(3,5)為函數(shù)y=f(x)的遞減區(qū)間
C.函數(shù)y=f(x)在x=0處取得極大值D.函數(shù)y=f(x)在x=5處取得極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“m>n>0”是方程mx2+ny2=1表示橢圓的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案