【題目】

已知等差數(shù)列, .

(1)求數(shù)列的通項(xiàng)公式;

(2)記數(shù)列的前項(xiàng)和為,求

(3)是否存在正整數(shù),使得仍為數(shù)列中的項(xiàng),若存在,求出所有滿(mǎn)足的正整數(shù)的值;若不存在,說(shuō)明理由.

【答案】(1) .

(2) .

(3) 存在,滿(mǎn)足條件的正整數(shù)

【解析】分析:(1)由題意,數(shù)列為等差數(shù)列,求得公差,即可求解數(shù)列的通項(xiàng)公式;

(2)由(1)知,得到,進(jìn)而可求解;

(3)由題意得,令,則,因?yàn)楣?/span>為8的約數(shù),的可能取值為,分類(lèi)討論即可求解的值.

詳解:(1)因?yàn)閿?shù)列為等差數(shù)列,

所以

公差=,所以

(2)由(1)知,當(dāng)時(shí),;當(dāng)時(shí),

,

設(shè)數(shù)列的前項(xiàng)和為,

當(dāng)時(shí),

(3)

(其中是奇數(shù)),則

為8的約數(shù),又是奇數(shù),的可能取值為

當(dāng)時(shí),是數(shù)列中的第5項(xiàng);

當(dāng)時(shí),不是數(shù)列中的項(xiàng).

所以存在,滿(mǎn)足條件的正整數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, , 平面ABCD⊥平面ABFE.

(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列滿(mǎn)足, ,其中.

(1) 求數(shù)列的通項(xiàng)公式;

(2) 設(shè)數(shù)列{bn}滿(mǎn)足 bn=,是否存在正整數(shù),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說(shuō)明理由.

(3) ,記數(shù)列{cn}的前項(xiàng)和為,其中,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程):
在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ= 與曲線 (t為參數(shù))相交于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種汽車(chē)購(gòu)買(mǎi)時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)共0.9萬(wàn)元,汽車(chē)的維修保養(yǎng)費(fèi)為:第一年0.2萬(wàn)元,第二年0.4萬(wàn)元,第三年0.6萬(wàn)元,……依等差數(shù)列逐年遞增.

(1)求該車(chē)使用了3年的總費(fèi)用(包括購(gòu)車(chē)費(fèi)用)為多少萬(wàn)元?

(2)設(shè)該車(chē)使用年的總費(fèi)用(包括購(gòu)車(chē)費(fèi)用)為),試寫(xiě)出的表達(dá)式;

(3)求這種汽車(chē)使用多少年報(bào)廢最合算(即該車(chē)使用多少年平均費(fèi)用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫(xiě)出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中, 底面 , 是直角梯形, , ,且 , 的中點(diǎn).

(1)求證:平面 平面 ;
(2)若二面角 的余弦值為 ,求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 ,命題 為假命題,則實(shí)數(shù) 的取值范圍為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)若曲線 在點(diǎn) 處的切線經(jīng)過(guò)點(diǎn) ,求 的值;
(2)若 內(nèi)存在極值,求 的取值范圍;
(3)當(dāng) 時(shí), 恒成立,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案