【題目】已知函數(shù) ( )
(1)若曲線 在點(diǎn) 處的切線經(jīng)過點(diǎn) ,求 的值;
(2)若 在 內(nèi)存在極值,求 的取值范圍;
(3)當(dāng) 時(shí), 恒成立,求 的取值范圍.
【答案】
(1)解: .
, .
因?yàn)? 在 處的切線過 ,所以 .
(2)解: 在 內(nèi)有解且 在 內(nèi)有正有負(fù).
令 .
由 ,得 在 內(nèi)單調(diào)遞減,
所以 .
(3)解:因?yàn)? 時(shí) 恒成立,所以 .
令 ,則 .
令 ,由 ,得 在 內(nèi)單調(diào)遞減,又 ,
所以 時(shí) ,即 , 單調(diào)遞增, 時(shí) ,
即 , 單調(diào)遞減.所以 在 內(nèi)單調(diào)遞增,
在 內(nèi)單調(diào)遞減,所以 .所以 .
【解析】(1)考察了曲線切線的斜率與導(dǎo)數(shù)的關(guān)系
(2)考察了極值與導(dǎo)數(shù)的關(guān)系,以及函數(shù)零點(diǎn)的存在性定理;f ( x ) 在 ( 1 , 2 ) 內(nèi)存在極值,等價(jià)于 f ′ ( x ) = 0 在 ( 1 , 2 ) 內(nèi)有解且f ′ ( x )在 ( 1 , 2 ) 內(nèi)有正有負(fù),及結(jié)合f ′ ( x )的導(dǎo)函數(shù),判斷f ′ ( x )是單調(diào)減函數(shù),因此運(yùn)用函數(shù)零點(diǎn)存在性定理,只要g(1)>0 ,g(2)<0即可;
(3)考察函數(shù)含參恒成立問題的一般解法,分離參數(shù)法,進(jìn)而利用函數(shù)單調(diào)性求最值。
注意第三問是證明恒成立問題,首先分離參數(shù),可得a > ,構(gòu)造函數(shù) h ( x ) = ,只要a大于h(x)得最大值,再利用導(dǎo)數(shù)確定h(x)的單調(diào)性,注意一次求導(dǎo)不可得,再求一次,即可確定h(x)得單調(diào)性,即可
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解導(dǎo)數(shù)的幾何意義的相關(guān)知識(shí),掌握通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知等差數(shù)列, .
(1)求數(shù)列的通項(xiàng)公式;
(2)記數(shù)列的前項(xiàng)和為,求;
(3)是否存在正整數(shù),使得仍為數(shù)列中的項(xiàng),若存在,求出所有滿足的正整數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·上海)設(shè)z1, z2C, ,則“z1, z2中至少有一個(gè)數(shù)是虛數(shù)”是“z1-z2是虛數(shù)”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,它滿足條件,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是一個(gè)單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 是等腰梯形, , , ,在梯形 中, ,且 , 平面 .
(1)求證: 平面 ;
(2)若二面角 的大小為 ,求 的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》有如下問題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com