【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.
【答案】(1) ,(2)側(cè)面積取得最大值時,等腰三角形的腰的長度為
【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時取得極大值,也是最大值。
試題解析:
(1)設(shè)交于點(diǎn),過作,垂足為,
在中,,,
在中,,
所以S,
(2)要使側(cè)面積最大,由(1)得:
令,所以得,
由得:
當(dāng)時,,當(dāng)時,
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
所以在時取得極大值,也是最大值;
所以當(dāng)時,側(cè)面積取得最大值,
此時等腰三角形的腰長
答:側(cè)面積取得最大值時,等腰三角形的腰的長度為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),滿足,當(dāng)時,有.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)在區(qū)間上的解析式,并利用定義證明證明其在該區(qū)間上的單調(diào)性;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中,,且前7項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,且.
(1)求角的大小;
(2)設(shè)數(shù)列滿足,前項(xiàng)和為,若,求的值.
【答案】(1);(2)或.
【解析】試題分析:
(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.
(2)結(jié)合(1)中的結(jié)論可得 .則 ,據(jù)此可得關(guān)于實(shí)數(shù)k的方程,解方程可得,則或.
試題解析:
(1)由已知,又,所以.又由,
所以,所以,
所以為直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【題型】解答題
【結(jié)束】
18
【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn),如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求圓心在直線上,且與直線相切于點(diǎn)的圓的方程;
(2)求與圓外切于點(diǎn)且半徑為的圓的方程.
【答案】(1);(2).
【解析】試題分析:
(1)由題意可得圓的一條直徑所在的直線方程為,據(jù)此可得圓心,半徑,則所求圓的方程為.
(2)圓的標(biāo)準(zhǔn)方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設(shè)所求圓心為,結(jié)合弦長公式可得,.則圓的方程為.
試題解析:
(1)過點(diǎn)且與直線垂直的直線為,
由 .
即圓心,半徑,
所求圓的方程為.
(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設(shè)所求圓心為,
,∴,
,∴.
∴.
點(diǎn)睛:求圓的方程,主要有兩種方法:
(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點(diǎn)且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點(diǎn)與兩圓心三點(diǎn)共線.
(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨(dú)立參數(shù),所以應(yīng)該有三個獨(dú)立等式.
【題型】解答題
【結(jié)束】
20
【題目】如圖所示,平面,點(diǎn)在以為直徑的上,,,點(diǎn)為線段的中點(diǎn),點(diǎn)在弧上,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)設(shè)二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張經(jīng)營某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當(dāng)銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機(jī)抽取200名男性使用者和100名女性使用者,對該款產(chǎn)品進(jìn)行評分,繪制出如下頻率分布直方圖.
(1)利用組中值(數(shù)據(jù)分組后,一個小組的組中值是指這個小組的兩個端點(diǎn)的數(shù)的平均數(shù)),估計(jì)100名女性使用者評分的平均值;
(2)根據(jù)評分的不同,運(yùn)用分層抽樣從這200名男性中抽取20名,在這20名中,從評分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評分在區(qū)間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com