分析 設(shè)P(x,y),求出P到直線3x+4y+9=0距離,利用配方法求最值.
解答 解:設(shè)P(x,y),則P到直線3x+4y+9=0距離為d=$\frac{|3x+4y+9|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{|(y+2)^{2}+5|}{5}$
∴y=-2時(shí),P到直線3x+4y+9=0距離的最小值為1.
故答案為:1.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查點(diǎn)到直線的距離的運(yùn)用,考查配方法,正確運(yùn)用點(diǎn)到直線的距離公式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3}^{2n+2}-1}{2}$+n | B. | $\frac{1}{2}$•32n+2+n+$\frac{1}{2}$ | C. | $\frac{{3}^{2n+2}-1}{2}$-n | D. | $\frac{1}{2}$•32n+2-n+$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{2}$≤ω≤$\frac{3}{2}$ | B. | -$\frac{3}{2}$≤ω≤0 | C. | -2≤ω<0 | D. | -2≤ω≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com