已知中心在原點,焦點在坐標軸上的雙曲線經(jīng)過、兩點
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線兩點,且線段被圓三等分,求實數(shù)、的值

(1);(2) 

解析試題分析:(1)求雙曲線的方程,可設(shè)雙曲線的方程是,利用待定系數(shù)法求出的值即可,由雙曲線經(jīng)過、兩點,將、代入上面方程得,,解方程組,求出的值,即可求出雙曲線的方程;(2)求實數(shù)、的值,直線交雙曲線兩點,且線段被圓三等分,可知圓心與的中點垂直,設(shè)的中點,則,而圓心,因此只需找出的中點的關(guān)系,可將代人,得,設(shè),利用根與系數(shù)關(guān)系及中點坐標公式得,這樣可求得的值,由的值可求出的長,從而得圓的弦長,利用勾股定理可求得的值
試題解析:(1)設(shè)雙曲線的方程是,依題意有   2分
解得   3分 所以所求雙曲線的方程是      4分
(2)將代人,得 (*)
               6分
設(shè)的中點,則
                   7分
,,       8分
又圓心,依題意,故,即     9分
代人(*)得,解得
                   10分
故直線截圓所得弦長為,又到直線的距離  11分
所以圓的半徑
所以圓的方程是        

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1上任一點P,由點Px軸作垂線PQ,垂足為Q,設(shè)點MPQ上,且=2,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設(shè)N是過點且平行于x軸的直線上一動點,且滿足 (O為原點),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C=1(a>b>0)的離心率e,右焦點到直線=1的距離d,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點,過的直線交拋物線兩點.
(1)若線段中點的橫坐標等于,求直線的斜率;
(2)設(shè)點關(guān)于軸的對稱點為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6,直線與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)點分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線不重合),若、均與橢圓相切,試探究在軸上是否存在定點,使點、的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是橢圓的右焦點;圓軸交于兩點,其中是橢圓的左焦點.

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點為,點是點關(guān)于軸的對稱點,試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點,若的面積為,求橢圓的標準方程.

查看答案和解析>>

同步練習(xí)冊答案