2.身高都不相等的10人排成人數(shù)相等的兩列,每列從前到后按高矮次序排列,則共有不同的排隊方法種數(shù)252種.

分析 由每列從前到后按高矮次序排列,則排列順序只有一種,只要把10人排成人數(shù)相等的兩列即可.

解答 解:每列從前到后按高矮次序排列,則排列順序只有一種,只要把10人排成人數(shù)相等的兩列,故有C105=252種,
故答案為:252.

點評 本題考查了定序法,進行排列問題,關(guān)鍵是掌握每列從前到后按高矮次序排列,則排列順序只有一種,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=mlnx+x2.(m為常數(shù))
(Ⅰ)當x∈[1,e]時,求函數(shù)y=f(x)的零點個數(shù);
(Ⅱ)是否存在正實數(shù)m,使得對任意x1、x2∈[1,e],都有$|{f({x_1})-f({x_2})}|≤|{\frac{1}{x_1}-\frac{1}{x_2}}|$,若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.從某校高三1200名學生中隨機抽取40名,將他們一次數(shù)學模擬成績繪制成頻率分布直方圖(如圖)(滿分為150分,成績均為不低于80分整數(shù)),分為7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].

(1)求圖中的實數(shù)a的值,并估計該高三學生這次成績在120分以上的人數(shù);
(2)在隨機抽取的40名學生中,從成績在[90,100)與[140,150]兩個分數(shù)段內(nèi)隨機抽取兩名學生,求這兩名學生的成績之差的絕對值標不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列函數(shù)中,既是奇函數(shù),又在區(qū)間(0,+∞)上遞增的是( 。
A.y=2|x|B.y=lnxC.$y={x^{\frac{1}{3}}}$D.$y=x+\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知菱形ABCD的邊長為2,∠BAD=60°,M為CD的中點,若N為該菱形內(nèi)任意一點(含邊界),則$\overrightarrow{AM}•\overrightarrow{AN}$的最大值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知隨機變量ξ服從正態(tài)分布N(2,σ2),若P(X<a)=0.28,則P(a≤X≤4-a)=0.44.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.點(3,1)不在直線3x-2y+a=0的右側(cè),則a的范圍為(-∞,-7].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求x+3x2+5x3+…+(2n-1)xn的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,且$\sqrt{3}$csinA=acosC.
(Ⅰ)求C的值;
(Ⅱ)若c=$\sqrt{7}$a,b=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案